Difference between revisions of "Conservative Vector Fields"
Line 1: | Line 1: | ||
+ | === Conservative vector fields === | ||
+ | |||
+ | A vector field <math>\mathbf{F}</math> for which <math>\nabla \times \mathbf{F} = \mathbf{0}</math> at all points is an "<b>conservative</b>" vector field. <math>\mathbf{F}</math> can also be referred to as being "<b>irrotational</b>" since the gain around any closed curve is always 0. | ||
+ | |||
+ | A key property of a conservative vector field <math>\mathbf{F}</math> is that the gain of <math>\mathbf{F}</math> along a continuous curve is purely a function of the curve's end points. If <math>C_1</math> and <math>C_2</math> are two continuous curves which share the same starting point <math>\mathbf{q}_0</math> and end point <math>\mathbf{q}_1</math>, then <math>\int_{\mathbf{q} \in C_1} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \int_{\mathbf{q} \in C_2} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q}</math>. In other words, the gain is purely a function of <math>\mathbf{q}_0</math> and <math>\mathbf{q}_1</math>. This property can be derived from Stokes' theorem as follows: | ||
+ | |||
+ | Invert the orientation of <math>C_2</math> to get <math>-C_2</math> and combine <math>C_1</math> and <math>-C_2</math> to get a continuous closed curve <math>C_3 = C_1 - C_2</math>, linking the curves together at the endpoints <math>\mathbf{q}_0</math> and <math>\mathbf{q}_1</math>. Let <math>\sigma</math> denote a surface for which <math>C_3</math> is the counterclockwise oriented boundary. | ||
+ | |||
+ | Stokes' theorem states that <math>\int_{\mathbf{q} \in C_3} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \iint_{\mathbf{q} \in \sigma} (\nabla \times \mathbf{F})|_\mathbf{q} \cdot \mathbf{dS} = 0</math>. The gain around <math>C_3</math> is the gain along <math>C_1</math> minus the gain along <math>C_2</math>: <math>\int_{\mathbf{q} \in C_3} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \int_{\mathbf{q} \in C_1} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} + \int_{\mathbf{q} \in -C_2} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q}</math> <math> = \int_{\mathbf{q} \in C_1} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} - \int_{\mathbf{q} \in C_2} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q}</math>. Therefore: | ||
+ | |||
+ | <math>\int_{\mathbf{q} \in C_3} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = 0</math> <math>\implies \int_{\mathbf{q} \in C_1} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \int_{\mathbf{q} \in C_2} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q}</math> | ||
+ | |||
+ | |||
+ | ==Resources== | ||
<strong>Conservative Vector Fields</strong> | <strong>Conservative Vector Fields</strong> | ||
Revision as of 20:28, 10 October 2021
Conservative vector fields
A vector field for which at all points is an "conservative" vector field. can also be referred to as being "irrotational" since the gain around any closed curve is always 0.
A key property of a conservative vector field is that the gain of along a continuous curve is purely a function of the curve's end points. If and are two continuous curves which share the same starting point and end point , then . In other words, the gain is purely a function of and . This property can be derived from Stokes' theorem as follows:
Invert the orientation of to get and combine and to get a continuous closed curve , linking the curves together at the endpoints and . Let denote a surface for which is the counterclockwise oriented boundary.
Stokes' theorem states that . The gain around is the gain along minus the gain along : . Therefore:
Resources
Conservative Vector Fields
- Conservative Vector Fields Video by James Sousa, Math is Power 4U
- Conservative Vector Fields - The Definition and a Few Remarks Video by Patrick JMT
- Showing a Vector Field on R^2 is Conservative Video by Patrick JMT
Finding a Potential Function of a Conservative Vector Field
- Determining the Potential Function of a Conservative Vector Field Video by James Sousa, Math is Power 4U
- Finding a Potential for a Conservative Vector Field Video by Patrick JMT
- Finding a Potential for a Conservative Vector Field Ex 2 Video by Patrick JMT
- Potential Function of a Conservative Vector Field Video by Krista King
- Potential Function of a Conservative Vector Field in 3D Video by Krista King
The Fundamental Theorem of Line Integrals
- The Fundamental Theorem of Line Integrals Part 1 Video by James Sousa, Math is Power 4U
- The Fundamental Theorem of Line Integrals Part 2 Video by James Sousa, Math is Power 4U
- The Fundamental Theorem of Line Integrals on a Closed Path Video by James Sousa, Math is Power 4U
- Ex 1: Fundamental Theorem of Line Integrals in the Plane Video by James Sousa, Math is Power 4U
- Ex 2: Fundamental Theorem of Line Integrals in the Plane Video by James Sousa, Math is Power 4U
- Ex 3: Fundamental Theorem of Line Integrals in the Plane Video by James Sousa, Math is Power 4U
- Ex 4: Fundamental Theorem of Line Integrals in Space Video by James Sousa, Math is Power 4U
- The Fundamental Theorem for Line Integrals Video by Patrick JMT
- Potential Function of a Conservative Vector Field to Evaluate a Line Integral Video by Krista King