Difference between revisions of "Conservative Vector Fields"
Line 13: | Line 13: | ||
==Resources== | ==Resources== | ||
+ | * [https://en.wikibooks.org/wiki/Calculus/Vector_calculus Vector Calculus], Wikibooks: Calculus | ||
+ | |||
<strong>Conservative Vector Fields</strong> | <strong>Conservative Vector Fields</strong> | ||
Revision as of 20:28, 10 October 2021
Conservative vector fields
A vector field for which at all points is an "conservative" vector field. can also be referred to as being "irrotational" since the gain around any closed curve is always 0.
A key property of a conservative vector field is that the gain of along a continuous curve is purely a function of the curve's end points. If and are two continuous curves which share the same starting point and end point , then . In other words, the gain is purely a function of and . This property can be derived from Stokes' theorem as follows:
Invert the orientation of to get and combine and to get a continuous closed curve , linking the curves together at the endpoints and . Let denote a surface for which is the counterclockwise oriented boundary.
Stokes' theorem states that . The gain around is the gain along minus the gain along : . Therefore:
Resources
- Vector Calculus, Wikibooks: Calculus
Conservative Vector Fields
- Conservative Vector Fields Video by James Sousa, Math is Power 4U
- Conservative Vector Fields - The Definition and a Few Remarks Video by Patrick JMT
- Showing a Vector Field on R^2 is Conservative Video by Patrick JMT
Finding a Potential Function of a Conservative Vector Field
- Determining the Potential Function of a Conservative Vector Field Video by James Sousa, Math is Power 4U
- Finding a Potential for a Conservative Vector Field Video by Patrick JMT
- Finding a Potential for a Conservative Vector Field Ex 2 Video by Patrick JMT
- Potential Function of a Conservative Vector Field Video by Krista King
- Potential Function of a Conservative Vector Field in 3D Video by Krista King
The Fundamental Theorem of Line Integrals
- The Fundamental Theorem of Line Integrals Part 1 Video by James Sousa, Math is Power 4U
- The Fundamental Theorem of Line Integrals Part 2 Video by James Sousa, Math is Power 4U
- The Fundamental Theorem of Line Integrals on a Closed Path Video by James Sousa, Math is Power 4U
- Ex 1: Fundamental Theorem of Line Integrals in the Plane Video by James Sousa, Math is Power 4U
- Ex 2: Fundamental Theorem of Line Integrals in the Plane Video by James Sousa, Math is Power 4U
- Ex 3: Fundamental Theorem of Line Integrals in the Plane Video by James Sousa, Math is Power 4U
- Ex 4: Fundamental Theorem of Line Integrals in Space Video by James Sousa, Math is Power 4U
- The Fundamental Theorem for Line Integrals Video by Patrick JMT
- Potential Function of a Conservative Vector Field to Evaluate a Line Integral Video by Krista King