Difference between revisions of "Functions:Forward Image"
Jump to navigation
Jump to search
(Replaced content with "In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function <math>f</math> at each element of a gi...") Tag: Replaced |
|||
Line 1: | Line 1: | ||
− | |||
− | |||
In mathematics, the image of a function is the set of all output values it may produce. | In mathematics, the image of a function is the set of all output values it may produce. | ||
− | More generally, evaluating a given function | + | More generally, evaluating a given function <math>f</math> at each element of a given subset {\displaystyle A}A of its domain produces a set, called the "image of {\displaystyle A}A under (or through) {\displaystyle f}f". Similarly, the inverse image (or preimage) of a given subset {\displaystyle B}B of the codomain of {\displaystyle f,}f, is the set of all elements of the domain that map to the members of {\displaystyle B.}B. |
Image and inverse image may also be defined for general binary relations, not just functions. | Image and inverse image may also be defined for general binary relations, not just functions. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 09:16, 12 October 2021
In mathematics, the image of a function is the set of all output values it may produce.
More generally, evaluating a given function at each element of a given subset {\displaystyle A}A of its domain produces a set, called the "image of {\displaystyle A}A under (or through) {\displaystyle f}f". Similarly, the inverse image (or preimage) of a given subset {\displaystyle B}B of the codomain of {\displaystyle f,}f, is the set of all elements of the domain that map to the members of {\displaystyle B.}B.
Image and inverse image may also be defined for general binary relations, not just functions.