Difference between revisions of "Sequences:Tails"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 9: Line 9:
  
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">[http://mathonline.wdfiles.com/local--files/the-tail-of-a-sequence-of-real-numbers/Screen%20Shot%202014-10-13%20at%202.27.28%20AM.png The Tail of a Sequence of Real Numbers] from mathonline.wikidot.com</div>
+
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">[http://mathonline.wdfiles.com/local--files/the-tail-of-a-sequence-of-real-numbers/Screen%20Shot%202014-10-13%20at%202.27.28%20AM.png '''''The Tail of a Sequence of Real Numbers''''']</div>
[http://mathonline.wdfiles.com/local--files/the-tail-of-a-sequence-of-real-numbers/Screen%20Shot%202014-10-13%20at%202.27.28%20AM.png The Tail of a Sequence of Real Numbers] from mathonline.wikidot.com
 
  
 
<p>The following theorem tells us that the m-tail of a sequence must also converge to the limit <math>L</math> provided the parent sequence <math>(a_n)</math> converges to <math>L</math>.</p>
 
<p>The following theorem tells us that the m-tail of a sequence must also converge to the limit <math>L</math> provided the parent sequence <math>(a_n)</math> converges to <math>L</math>.</p>

Revision as of 10:50, 20 October 2021

The Tail of a Sequence of Real Numbers

We will now look at an important aspect of a sequence known as the tail of a sequence.

Definition: Let be a sequence of real numbers. Then for any , the -Tail of is a the subsequence .

Recall that for a sequence that converges to the real number then , that is there exists a natural number such that if then . For any given positive we can consider the -tail of the sequence to be the subsequence of such that all terms in this tail are within an -distance from our limit . The diagram below illustrates this concept.


The following theorem tells us that the m-tail of a sequence must also converge to the limit provided the parent sequence converges to .

Theorem 1: Let be a sequence of real numbers. Then converges to if and only if for any the -tail of , call it converges to .

Resources