Difference between revisions of "Graphs of Polynomials"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 1: Line 1:
In mathematics, a graph polynomial is a graph invariant whose values are polynomials. Invariants of this type are studied in algebraic graph theory.[1] Important graph polynomials include:
+
==Polynomial functions==
  
* The characteristic polynomial, based on the graph's adjacency matrix.
+
A ''polynomial function'' is a function that can be defined by [[#evaluation|evaluating]] a polynomial. More precisely, a function {{math|''f''}} of one [[argument of a function|argument]] from a given domain is a polynomial function if there exists a polynomial
* The chromatic polynomial, a polynomial whose values at integer arguments give the number of colorings of the graph with that many colors.
+
:<math>a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0 </math>
* The dichromatic polynomial, a 2-variable generalization of the chromatic polynomial
+
that evaluates to <math>f(x)</math> for all {{mvar|x}} in the [[domain of a function|domain]] of {{mvar|f}} (here, {{math|''n''}} is a non-negative integer and {{math|''a''<sub>0</sub>, ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a<sub>n</sub>''}} are constant coefficients).
* The flow polynomial, a polynomial whose values at integer arguments give the number of nowhere-zero flows with integer flow amounts modulo the argument.
+
Generally, unless otherwise specified, polynomial functions have [[complex number|complex]] coefficients, arguments, and values. In particular, a polynomial, restricted to have real coefficients, defines a function from the complex numbers to the complex numbers. If the domain of this function is also [[restriction of a function|restricted]] to the reals, the resulting function is a [[real function]] that maps reals to reals.
* The (inverse of the) Ihara zeta function, defined as a product of binomial terms corresponding to certain closed walks in a graph.
+
 
* The Martin polynomial, used by Pierre Martin to study Euler tours
+
For example, the function {{math|''f''}}, defined by
* The matching polynomials, several different polynomials defined as the generating function of the matchings of a graph.
+
:<math> f(x) = x^3 - x,</math>
* The reliability polynomial, a polynomial that describes the probability of remaining connected after independent edge failures
+
is a polynomial function of one variable. Polynomial functions of several variables are similarly defined, using polynomials in more than one indeterminate, as in
* The Tutte polynomial, a polynomial in two variables that can be defined (after a small change of variables) as the generating function of the numbers of connected components of induced subgraphs of the given graph, parameterized by the number of vertices in the subgraph.
+
:<math>f(x,y)= 2x^3+4x^2y+xy^5+y^2-7.</math>
 +
 
 +
According to the definition of polynomial functions, there may be expressions that obviously are not polynomials but nevertheless define polynomial functions. An example is the expression <math>\left(\sqrt{1-x^2}\right)^2,</math> which takes the same values as the polynomial <math>1-x^2</math> on the interval <math>[-1,1]</math>, and thus both expressions define the same polynomial function on this interval.
 +
 
 +
Every polynomial function is [[continuous function|continuous]], [[smooth function|smooth]], and [[entire function|entire]].
  
 
===Graphs===
 
===Graphs===
 
<div class="floatright">
 
<div class="floatright">
 
<gallery perrow="2" widths="200px" heights="200px">
 
<gallery perrow="2" widths="200px" heights="200px">
File:Algebra1 fnz fig037 pc.svg|Polynomial of degree 0:<br/><small>{{math|''f''(''x'')}} = 2</small>
+
File:Algebra1 fnz fig037 pc.svg|Polynomial of degree 0:<br/><small>{{math|''f''(''x'') {{=}} 2}}</small>
File:Fonction de Sophie Germain.png|Polynomial of degree 1:<br/><small>{{math|''f''(''x'')}} = 2''x'' + 1</small>
+
File:Fonction de Sophie Germain.png|Polynomial of degree 1:<br/><small>{{math|''f''(''x'') {{=}} 2''x'' + 1}}</small>
File:Polynomialdeg2.svg|Polynomial of degree 2:<br/><small>{{math|''f''(''x'')}} = ''x''<sup>2</sup> − ''x'' − 2<br/> = (''x'' + 1)(''x'' − 2)</small>
+
File:Polynomialdeg2.svg|Polynomial of degree 2:<br/><small>{{math|''f''(''x'') {{=}} ''x''<sup>2</sup> − ''x'' − 2}}<br/>{{math|{{=}} (''x'' + 1)(''x'' − 2)}}</small>
File:Polynomialdeg3.svg|Polynomial of degree 3:<br/><small>{{math|''f''(''x'')}} = ''x''<sup>3</sup>/4 + 3''x''<sup>2</sup>/4 − 3''x''/2 − 2<br/> = 1/4 (''x'' + 4)(''x'' + 1)(''x'' − 2)</small>
+
File:Polynomialdeg3.svg|Polynomial of degree 3:<br/><small>{{math|''f''(''x'') {{=}} ''x''<sup>3</sup>/4 + 3''x''<sup>2</sup>/4 − 3''x''/2 − 2}}<br/>{{math|{{=}} 1/4 (''x'' + 4)(''x'' + 1)(''x'' − 2)}}</small>
File:Polynomialdeg4.svg|Polynomial of degree 4:<br/><small>{{math|''f''(''x'')}} = 1/14 (''x'' + 4)(''x'' + 1)(''x'' − 1)(''x'' − 3) <br/>+ 0.5</small>
+
File:Polynomialdeg4.svg|Polynomial of degree 4:<br/><small>{{math|''f''(''x'') {{=}} 1/14 (''x'' + 4)(''x'' + 1)(''x'' − 1)(''x'' − 3) <br/>+ 0.5}}</small>
File:Quintic polynomial.svg|Polynomial of degree 5:<br/><small>{{math|''f''(''x'')}} = 1/20 (''x'' + 4)(''x'' + 2)(''x'' + 1)(''x'' − 1)<br/>(''x'' − 3) + 2</small>
+
File:Quintic polynomial.svg|Polynomial of degree 5:<br/><small>{{math|''f''(''x'') {{=}} 1/20 (''x'' + 4)(''x'' + 2)(''x'' + 1)(''x'' − 1)<br/>(''x'' − 3) + 2}}</small>
File:Sextic Graph.svg|Polynomial of degree 6:<br/><small>{{math|''f''(''x'')}} = 1/100 (''x''<sup>6</sup> − 2''x'' <sup>5</sup> − 26''x''<sup>4</sup> + 28''x''<sup>3</sup><br/>{{math|+ 145''x''<sup>2</sup> − 26''x'' − 80)}}</small>
+
File:Sextic Graph.svg|Polynomial of degree 6:<br/><small>{{math|''f''(''x'') {{=}} 1/100 (''x''<sup>6</sup> − 2''x'' <sup>5</sup> − 26''x''<sup>4</sup> + 28''x''<sup>3</sup>}}<br/>{{math|+ 145''x''<sup>2</sup> − 26''x'' − 80)}}</small>
File:Septic graph.svg|Polynomial of degree 7:<br/><small>{{math|''f''(''x'')}} = (''x'' − 3)(''x'' − 2)(''x'' − 1)(''x'')(''x'' + 1)(''x'' + 2)<br/>{{math|(''x'' + 3)}}</small>
+
File:Septic graph.svg|Polynomial of degree 7:<br/><small>{{math|''f''(''x'') {{=}} (''x'' − 3)(''x'' − 2)(''x'' − 1)(''x'')(''x'' + 1)(''x'' + 2)}}<br/>{{math|(''x'' + 3)}}</small>
 
</gallery>
 
</gallery>
</div>  
+
</div>
A polynomial function in one real variable can be represented by a graph.
+
A polynomial function in one real variable can be represented by a [[graph of a function|graph]].
 
<ul>
 
<ul>
 
<li>
 
<li>
 
The graph of the zero polynomial
 
The graph of the zero polynomial
:{{math|1=''f''(''x'') = 0}}
+
{{block indent|{{math|1=''f''(''x'') = 0}}}} is the {{math|''x''}}-axis.
 
 
 
 
is the {{math|''x''}}-axis.
 
 
</li>
 
</li>
 
<li>
 
<li>
 
The graph of a degree 0 polynomial
 
The graph of a degree 0 polynomial
:{{math|1=''f''(''x'') = ''a''<sub>0</sub>}}, where {{math|''a''<sub>0</sub> ≠ 0}},
+
{{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub>}}, where {{math|''a''<sub>0</sub> ≠ 0}},}} is a horizontal line with {{nowrap|{{math|''y''}}-intercept {{math|''a''<sub>0</sub>}}}}
 
 
is a horizontal line with {{math|''y''}}-intercept {{math|''a''<sub>0</sub>}}
 
 
</li>
 
</li>
 
<li>
 
<li>
 
The graph of a degree 1 polynomial (or linear function)
 
The graph of a degree 1 polynomial (or linear function)
:{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x''}}, where {{math|''a''<sub>1</sub> ≠ 0}},  
+
{{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x''}}, where {{math|''a''<sub>1</sub> ≠ 0}},}} is an oblique line with {{nowrap|{{math|''y''}}-intercept {{math|''a''<sub>0</sub>}}}} and [[slope]] {{math|''a''<sub>1</sub>}}.
 
 
 
 
is an oblique line with {{math|''y''}}-intercept {{math|''a''<sub>0</sub>}} and slope {{math|''a''<sub>1</sub>}}.
 
 
</li>
 
</li>
 
<li>
 
<li>
 
The graph of a degree 2 polynomial
 
The graph of a degree 2 polynomial
:{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup>}}, where {{math|''a''<sub>2</sub> ≠ 0}}  
+
{{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup>}}, where {{math|''a''<sub>2</sub> ≠ 0}}}} is a [[parabola]].
 
 
is a parabola.
 
 
</li>
 
</li>
 
<li>
 
<li>
 
The graph of a degree 3 polynomial
 
The graph of a degree 3 polynomial
:{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + ''a''<sub>3</sub>''x''<sup>3</sup>}}, where {{math|''a''<sub>3</sub> ≠ 0}}
+
{{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + ''a''<sub>3</sub>''x''<sup>3</sup>}}, where {{math|''a''<sub>3</sub> ≠ 0}}}} is a [[cubic equation|cubic curve]].
 
 
is a cubic curve.
 
 
</li>
 
</li>
 
<li>
 
<li>
 
The graph of any polynomial with degree 2 or greater
 
The graph of any polynomial with degree 2 or greater
:{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + ⋯ + ''a''<sub>''n''</sub>''x''<sup>''n''</sup>}}, where {{math|''a''<sub>''n''</sub> ≠ 0 and ''n'' ≥ 2}}  
+
{{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + ⋯ + ''a''<sub>''n''</sub>''x''<sup>''n''</sup>}}, where {{math|''a''<sub>''n''</sub> ≠ 0 and ''n'' ≥ 2}}}} is a continuous non-linear curve.
 
 
is a continuous non-linear curve.
 
 
</li>
 
</li>
 
</ul>
 
</ul>
  
A non-constant polynomial function tends to infinity when the variable increases indefinitely (in absolute value). If the degree is higher than one, the graph does not have any asymptote. It has two parabolic branches with vertical direction (one branch for positive ''x'' and one for negative ''x'').
+
A non-constant polynomial function [[infinity#Calculus|tends to infinity]] when the variable increases indefinitely (in [[absolute value]]). If the degree is higher than one, the graph does not have any [[asymptote]]. It has two [[parabolic branch]]es with vertical direction (one branch for positive ''x'' and one for negative ''x'').
  
 
Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior.
 
Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior.
 
==Resources==
 
* [https://math.libretexts.org/Courses/Borough_of_Manhattan_Community_College/MAT_206_Precalculus/3%3A_Polynomial_and_Rational_Functions_New/3.4%3A_Graphs_of_Polynomial_Functions Graphs of Polynomial Functions], Mathematics LibreTexts
 
 
==References==
 
# Shi, Yongtang, et al. Graph Polynomials. CRC Press, Taylor Et Francis Group, 2017.
 

Revision as of 13:26, 21 October 2021

Polynomial functions

A polynomial function is a function that can be defined by evaluating a polynomial. More precisely, a function f of one argument from a given domain is a polynomial function if there exists a polynomial

that evaluates to for all x in the domain of f (here, n is a non-negative integer and a0, a1, a2, ..., an are constant coefficients). Generally, unless otherwise specified, polynomial functions have complex coefficients, arguments, and values. In particular, a polynomial, restricted to have real coefficients, defines a function from the complex numbers to the complex numbers. If the domain of this function is also restricted to the reals, the resulting function is a real function that maps reals to reals.

For example, the function f, defined by

is a polynomial function of one variable. Polynomial functions of several variables are similarly defined, using polynomials in more than one indeterminate, as in

According to the definition of polynomial functions, there may be expressions that obviously are not polynomials but nevertheless define polynomial functions. An example is the expression which takes the same values as the polynomial on the interval , and thus both expressions define the same polynomial function on this interval.

Every polynomial function is continuous, smooth, and entire.

Graphs

A polynomial function in one real variable can be represented by a graph.

A non-constant polynomial function tends to infinity when the variable increases indefinitely (in absolute value). If the degree is higher than one, the graph does not have any asymptote. It has two parabolic branches with vertical direction (one branch for positive x and one for negative x).

Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior.