Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | <math> \ | + | <math> \int\dfrac{du}{\sqrt{a^2−u^2}} & = \arcsin \left(\dfrac{u}{a}\right)+C \\ \int\dfrac{du}{a^2+u^2}&=\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right)+C \\ \int\dfrac{du}{u\sqrt{u^2−a^2}}&=\dfrac{1}{a}\text{arcsec} \left(\dfrac{|u|}{a}\right)+C </math> |
+ | |||
[https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor | [https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor | ||
[https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by patrickJMT | [https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by patrickJMT |
Revision as of 13:44, 28 October 2021
Failed to parse (syntax error): {\displaystyle \int\dfrac{du}{\sqrt{a^2−u^2}} & = \arcsin \left(\dfrac{u}{a}\right)+C \\ \int\dfrac{du}{a^2+u^2}&=\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right)+C \\ \int\dfrac{du}{u\sqrt{u^2−a^2}}&=\dfrac{1}{a}\text{arcsec} \left(\dfrac{|u|}{a}\right)+C }
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT