Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | <math> \int\frac{du}{\sqrt{a^ | + | <math> \int\frac{du}{\sqrt{a^2 - u^2}} = \arcsin \left(\frac{u}{a}\right)+C |
\int\frac{du}{a^2+u^2} =\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right)+C | \int\frac{du}{a^2+u^2} =\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right)+C | ||
− | \int\frac{du}{u\sqrt{u^ | + | \int\frac{du}{u\sqrt{u^2 - a^2}} =\dfrac{1}{a}\text{\arcsec} \left(\dfrac{|u|}{a}\right)+C </math> |
[https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor | [https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor | ||
[https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by patrickJMT | [https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by patrickJMT |
Revision as of 13:46, 28 October 2021
Failed to parse (syntax error): {\displaystyle \int\frac{du}{\sqrt{a^2 - u^2}} = \arcsin \left(\frac{u}{a}\right)+C \int\frac{du}{a^2+u^2} =\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right)+C \int\frac{du}{u\sqrt{u^2 - a^2}} =\dfrac{1}{a}\text{\arcsec} \left(\dfrac{|u|}{a}\right)+C }
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT