Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"
Jump to navigation
Jump to search
Line 15: | Line 15: | ||
<p style="text-align: center;"><math> \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}.</math></p> | <p style="text-align: center;"><math> \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}.</math></p> | ||
− | <p>Applying the formula with <math> | + | <p>Applying the formula with <math> a=2, </math> we obtain</p> |
− | <p class="mt-indent-3" style="text-align:center;"><math> | + | <p class="mt-indent-3" style="text-align:center;"><math> \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\]</math></p> |
==Resources== | ==Resources== |
Revision as of 14:19, 28 October 2021
Evaluate the integral
Solution
Substitute . Then and we have
Applying the formula with we obtain
Failed to parse (syntax error): {\displaystyle \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\]}
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT