Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 5: Line 5:
 
<math> \int\frac{du}{u\sqrt{u^2 - a^2}} =\frac{1}{a}\arcsec \left(\dfrac{|u|}{a}\right) + C </math>
 
<math> \int\frac{du}{u\sqrt{u^2 - a^2}} =\frac{1}{a}\arcsec \left(\dfrac{|u|}{a}\right) + C </math>
  
 +
 +
==Example Problem==
 
<p>Evaluate the integral</p>
 
<p>Evaluate the integral</p>
  

Revision as of 14:21, 28 October 2021


Example Problem

Evaluate the integral

Solution

Substitute . Then and we have

Applying the formula with we obtain

Resources

Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor

Integrating using Inverse Trigonometric Functions by patrickJMT