Difference between revisions of "Cauchy-Schwarz Formula"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | + | <p>One of the most important inequalities in mathematics is inarguably the famous Cauchy-Schwarz inequality whose use appears in many important proofs. We will prove this important inequality and prove an analogue of the triangle inequality in higher dimension Euclidean <math>n</math>-space.</p> | |
− | + | ==The Cauchy-Schwarz Inequality== | |
− | <math> | + | <td><strong>Theorem 1 (The Cauchy-Schwarz Inequality):</strong> If <math>\mathbf{x} = (x_1, x_2, ..., x_n), \mathbf{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n</math> then <math>(\mathbf{x} \cdot \mathbf{y})^2 \leq \| \mathbf{x} \|^2 \| \mathbf{y} \|^2</math>.</td> |
− | + | <ul> | |
− | <math>\ | + | <li><strong>Proof:</strong> Let <math>\mathbf{x}, \mathbf{y} \in \mathbb{R}^n</math>. Then we want to prove that:</li> |
− | + | </ul> | |
− | + | <math>\begin{align} \quad ( \mathbf{x} \cdot \mathbf{y} )^2 = \left ( \sum_{i=1}^{n} x_iy_i \right)^2 \leq \left ( \sum_{i=1}^{n} x_i^2 \right ) \left ( \sum_{i=1}^{n} y_i^2 \right ) = \| \mathbf{x} \|^2 \| \mathbf{y} \|^2 \quad (*) \end{align}</math> | |
+ | <ul> | ||
+ | <li>Notice that the sum of squares is always nonnegative, and so for all <math>t \in \mathbb{R}</math> we have that:</li> | ||
+ | </ul> | ||
+ | <math>\begin{align} \quad 0 \leq \sum_{i=1}^{n} (x_it + y_i)^2 = \sum_{i=1}^{n} (x_i^2 t^2 + 2x_iy_it + y_i^2) = \sum_{i=1}^{n} x_i^2 t^2 + \sum_{i=1}^{n} 2x_iy_i t + \sum_{i=1}^{n} y_i^2 \end{align}</math> | ||
+ | <ul> | ||
+ | <li>Let <math>\displaystyle{A = \sum_{i=1}^{n} x_i^2}</math>, <math>\displaystyle{B = \sum_{i=1}^{n} x_iy_i}</math>, and <math>\displaystyle{C = \sum_{i=1}^{n} y_i^2}</math>. Then:</li> | ||
+ | </ul> | ||
+ | <math>\begin{align} \quad 0 \leq At^2 + 2Bt + C \end{align}</math> | ||
+ | <ul> | ||
+ | <li>Suppose that <math>A = 0</math>. Then <math>(*)</math> reduces to <math>0 \leq 0</math> which is true. If <math>A > 0</math>, then let <math>t = -\frac{B}{A}</math>. Then:</li> | ||
+ | </ul> | ||
+ | <math>\begin{align} \quad 0 \leq A \left ( \frac{-B}{A} \right)^2 + 2B \left(\frac{-B}{A} \right ) + C = \frac{B^2}{A} - \frac{2B^2}{A} + C = - \frac{B^2}{A} + C \end{align}</math> | ||
+ | <ul> | ||
+ | <li>Therefore we have that:</li> | ||
+ | </ul> | ||
+ | <math>\begin{align} \quad 0 \leq -\frac{B^2}{A} + C \\ \quad 0 \leq -B^2 + AC \\ \quad B^2 \leq AC \\ \quad \left ( \sum_{i=1}^{n} x_iy_i \right )^2 \leq \left ( \sum_{i=1}^{n} x_i^2 \right ) \left ( \sum_{i=1}^{n} y_i^2 \right ) \\ \quad (\mathbf{x} \cdot \mathbf{y})^2 \leq \| \mathbf{x} \|^2 \| \mathbf{y} \|^2 \quad \blacksquare \end{align}</math> | ||
+ | <p>Often times the Cauchy-Schwarz inequality is stated by squaring both sides of the inequality above:</p> | ||
+ | <math>\begin{align} \quad \mid \mathbf{x} \cdot \mathbf{y} | \leq \| \mathbf{x} \| \| \mathbf{y} \| \end{align}</math> | ||
+ | ==The Triangle Inequality== | ||
− | <math>\ | + | <td><strong>Theorem 2 (The Triangle Inequality):</strong> If <math>\mathbf{x} = (x_1, x_2, ..., x_n), \mathbf{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n</math> then <math>\| \mathbf{x} + \mathbf{y} \| \leq \| \mathbf{x} \| + \| \mathbf{y} \|</math>.</td> |
− | + | <ul> | |
+ | <li><strong>Proof:</strong> Let <math>\mathbf{x}, \mathbf{y} \in \mathbb{R}^n</math>. Then:</li> | ||
+ | </ul> | ||
+ | <math>\begin{align} \quad \| \mathbf{x} + \mathbf{y} \| = \| (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \| = \left ( \sum_{i=1}^{n} (x_i + y_i)^2 \right )^{1/2} \end{align}</math> | ||
+ | <ul> | ||
+ | <li>Square both sides of the equation and apply the Cauchy-Schwarz inequality at <math>(*)</math> to get:</li> | ||
+ | </ul> | ||
+ | <math>\begin{align} \quad \| \mathbf{x} + \mathbf{y} \|^2 = \sum_{i=1}^{n} (x_i + y_i)^2 \\ \quad \| \mathbf{x} + \mathbf{y} \|^2 = (x_1 + y_1)^2 + (x_2 + y_2)^2 + ... + (x_n + y_n)^2 \\ \quad \| \mathbf{x} + \mathbf{y} \|^2 = (x_1^2 + 2x_1y_1 + y_1^2) + (x_2^2 + 2x_2y_2 + y_2^2) + ... + (x_n^2 + 2x_ny_n + y_n^2) \\ \quad \| \mathbf{x} + \mathbf{y} \|^2 = (x_1^2 + x_2^2 + ... + x_n^2) + 2(x_1y_1 + x_2y_2 + ... + x_ny_n) + (y_1^2 + y_2^2 + ... + y_n^2) \\ \quad \| \mathbf{x} + \mathbf{y} \|^2 = \| \mathbf{x} \|^2 + 2 (\mathbf{x} \cdot \mathbf{y}) + \| \mathbf{y} \|^2 \\ \quad \| \mathbf{x} + \mathbf{y} \|^2 \overset{(*)} \leq \| \mathbf{x} \|^2 + 2 \| \mathbf{x} \| \| \mathbf{y} \| + \| \mathbf{y} \|^2 \\ \quad \| \mathbf{x} + \mathbf{y} \|^2 \leq (\| \mathbf{x} \| + \| \mathbf{y} \|)^2 \end{align}</math> | ||
+ | <ul> | ||
+ | <li>Square rooting both sides of the inequality above yields <math>\| \mathbf{x} + \mathbf{y} \| \leq \| \mathbf{x} \| + \| \mathbf{y} \|</math> as desired. <math>\blacksquare</math></li> | ||
+ | </ul> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Licensing== | ==Licensing== | ||
Content obtained and/or adapted from: | Content obtained and/or adapted from: | ||
− | * [ | + | * [http://mathonline.wikidot.com/the-cauchy-schwarz-and-triangle-inequalities The Cauchy-Schwarz and Triangle Inequalities, mathonline.wikidot.com] under a CC BY-SA license |
Latest revision as of 15:19, 28 October 2021
One of the most important inequalities in mathematics is inarguably the famous Cauchy-Schwarz inequality whose use appears in many important proofs. We will prove this important inequality and prove an analogue of the triangle inequality in higher dimension Euclidean -space.
The Cauchy-Schwarz Inequality
Theorem 1 (The Cauchy-Schwarz Inequality): If then .
- Proof: Let . Then we want to prove that:
- Notice that the sum of squares is always nonnegative, and so for all we have that:
- Let , , and . Then:
- Suppose that . Then reduces to which is true. If , then let . Then:
- Therefore we have that:
Often times the Cauchy-Schwarz inequality is stated by squaring both sides of the inequality above:
The Triangle Inequality
Theorem 2 (The Triangle Inequality): If then .
- Proof: Let . Then:
- Square both sides of the equation and apply the Cauchy-Schwarz inequality at to get:
- Square rooting both sides of the inequality above yields as desired.
Licensing
Content obtained and/or adapted from:
- The Cauchy-Schwarz and Triangle Inequalities, mathonline.wikidot.com under a CC BY-SA license