Difference between revisions of "Laplace Transform to ODEs"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Created page with "In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the Laplace transform#s-domain equiv...")
 
Line 1: Line 1:
In [[mathematics]], the [[Laplace transform]] is a powerful [[integral transform]] used to switch a function from the [[time domain]] to the [[Laplace transform#s-domain equivalent circuits and impedances|s-domain]]. The Laplace transform can be used in some cases to solve [[linear differential equation]]s with given [[Initial value problem|initial conditions]].
+
The Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions.
  
 
First consider the following property of the Laplace transform:
 
First consider the following property of the Laplace transform:
Line 7: Line 7:
 
:<math>\mathcal{L}\{f''\}=s^2\mathcal{L}\{f\}-sf(0)-f'(0)</math>
 
:<math>\mathcal{L}\{f''\}=s^2\mathcal{L}\{f\}-sf(0)-f'(0)</math>
  
One can prove by [[Mathematical induction|induction]] that
+
One can prove by induction that
  
 
:<math>\mathcal{L}\{f^{(n)}\}=s^n\mathcal{L}\{f\}-\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0)</math>
 
:<math>\mathcal{L}\{f^{(n)}\}=s^n\mathcal{L}\{f\}-\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0)</math>
Line 19: Line 19:
 
:<math>f^{(i)}(0)=c_i</math>
 
:<math>f^{(i)}(0)=c_i</math>
  
Using the [[linearity]] of the Laplace transform it is equivalent to rewrite the equation as
+
Using the linearity of the Laplace transform it is equivalent to rewrite the equation as
  
 
:<math>\sum_{i=0}^{n}a_i\mathcal{L}\{f^{(i)}(t)\}=\mathcal{L}\{\phi(t)\}</math>
 
:<math>\sum_{i=0}^{n}a_i\mathcal{L}\{f^{(i)}(t)\}=\mathcal{L}\{\phi(t)\}</math>
Line 31: Line 31:
 
:<math>\mathcal{L}\{f(t)\}=\frac{\mathcal{L}\{\phi(t)\}+\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}c_{j-1}}{\sum_{i=0}^{n}a_is^i}</math>
 
:<math>\mathcal{L}\{f(t)\}=\frac{\mathcal{L}\{\phi(t)\}+\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}c_{j-1}}{\sum_{i=0}^{n}a_is^i}</math>
  
The solution for ''f''(''t'') is obtained by applying the [[inverse Laplace transform]] to <math>\mathcal{L}\{f(t)\}.</math>
+
The solution for ''f''(''t'') is obtained by applying the inverse Laplace transform to <math>\mathcal{L}\{f(t)\}.</math>
  
 
Note that if the initial conditions are all zero, i.e.
 
Note that if the initial conditions are all zero, i.e.

Revision as of 10:21, 29 October 2021

The Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions.

First consider the following property of the Laplace transform:

One can prove by induction that

Now we consider the following differential equation:

with given initial conditions

Using the linearity of the Laplace transform it is equivalent to rewrite the equation as

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^{n}a_i\mathcal{L}\{f^{(i)}(t)\}=\mathcal{L}\{\phi(t)\}}

obtaining

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}\{f(t)\}\sum_{i=0}^{n}a_is^i-\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}f^{(j-1)}(0)=\mathcal{L}\{\phi(t)\}}

Solving the equation for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}\{f(t)\}} and substituting Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{(i)}(0)} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i} one obtains

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}\{f(t)\}=\frac{\mathcal{L}\{\phi(t)\}+\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}c_{j-1}}{\sum_{i=0}^{n}a_is^i}}

The solution for f(t) is obtained by applying the inverse Laplace transform to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}\{f(t)\}.}

Note that if the initial conditions are all zero, i.e.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{(i)}(0)=c_i=0\quad\forall i\in\{0,1,2,...\ n\}}

then the formula simplifies to

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t)=\mathcal{L}^{-1}\left\{{\mathcal{L}\{\phi(t)\}\over\sum_{i=0}^{n}a_is^i}\right\}}

An example

We want to solve

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(t)+4f(t)=\sin(2t)}


with initial conditions f(0) = 0 and f′(0)=0.

We note that

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(t)=\sin(2t)}

and we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}\{\phi(t)\}=\frac{2}{s^2+4}}

The equation is then equivalent to

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s^2\mathcal{L}\{f(t)\}-sf(0)-f'(0)+4\mathcal{L}\{f(t)\}=\mathcal{L}\{\phi(t)\}}

We deduce

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}\{f(t)\}=\frac{2}{(s^2+4)^2}}

Now we apply the Laplace inverse transform to get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t)=\frac{1}{8}\sin(2t)-\frac{t}{4}\cos(2t)}

Licensing

Content obtained and/or adapted from: