Difference between revisions of "Connectedness"
Line 8: | Line 8: | ||
<p>For example, consider the metric space <span class="math-inline"><math>(\mathbb{R}, d)</math></span> where <span class="math-inline"><math>d</math></span> is the Euclidean metric on <span class="math-inline"><math>\mathbb{R}</math></span>. Let <span class="math-inline"><math>S = (a, b) \subset \mathbb{R}</math></span>, i.e., <span class="math-inline"><math>S</math></span> is an open interval in <span class="math-inline"><math>\mathbb{R}</math></span>. We claim that <span class="math-inline"><math>S</math></span> is connected.</p> | <p>For example, consider the metric space <span class="math-inline"><math>(\mathbb{R}, d)</math></span> where <span class="math-inline"><math>d</math></span> is the Euclidean metric on <span class="math-inline"><math>\mathbb{R}</math></span>. Let <span class="math-inline"><math>S = (a, b) \subset \mathbb{R}</math></span>, i.e., <span class="math-inline"><math>S</math></span> is an open interval in <span class="math-inline"><math>\mathbb{R}</math></span>. We claim that <span class="math-inline"><math>S</math></span> is connected.</p> | ||
<p>Suppose not. Then there exists nonempty open subsets <span class="math-inline"><math>A</math></span> and <span class="math-inline"><math>B</math></span> such that <span class="math-inline"><math>A \cap B = \emptyset</math></span> and <span class="math-inline"><math>(a, b) = A \cup B</math></span>. Furthermore, <span class="math-inline"><math>A</math></span> and <span class="math-inline"><math>B</math></span> must be open intervals themselves, say <span class="math-inline"><math>A = (c, d)</math></span> and <span class="math-inline"><math>B = (e, f)</math></span>. We must have that <span class="math-inline"><math>A \cup B = (c, d) \cup (e, f)</math></span>. So <span class="math-inline"><math>c = a</math></span> or <span class="math-inline"><math>e = a</math></span> and furthermore, <span class="math-inline"><math>d = b</math></span> or <span class="math-inline"><math>f = b</math></span>.</p> | <p>Suppose not. Then there exists nonempty open subsets <span class="math-inline"><math>A</math></span> and <span class="math-inline"><math>B</math></span> such that <span class="math-inline"><math>A \cap B = \emptyset</math></span> and <span class="math-inline"><math>(a, b) = A \cup B</math></span>. Furthermore, <span class="math-inline"><math>A</math></span> and <span class="math-inline"><math>B</math></span> must be open intervals themselves, say <span class="math-inline"><math>A = (c, d)</math></span> and <span class="math-inline"><math>B = (e, f)</math></span>. We must have that <span class="math-inline"><math>A \cup B = (c, d) \cup (e, f)</math></span>. So <span class="math-inline"><math>c = a</math></span> or <span class="math-inline"><math>e = a</math></span> and furthermore, <span class="math-inline"><math>d = b</math></span> or <span class="math-inline"><math>f = b</math></span>.</p> | ||
− | <p>If <span class="math-inline"><math>c = a</math></span> then this implies that <span class="math-inline"><math>f = b</math></span> (since if <span class="math-inline"><math>d = b</math></span> then <span class="math-inline"><math>A = (a, b)</math></span> which implies that <span class="math-inline"><math>B = \emptyset</math></span>). So if <span class="math-inline"><math>A \cup B = (c, d) \cup (e, f) = (a, d) \cup (e, b) \text{ we must have that } a < d, e < b</math></span>. If <span class="math-inline"><math>d = e</math></span> then <span class="math-inline"><math>A \cup B = (a, d) \cup (d, b)</math></span> and so <span class="math-inline"><math>d \not \in (a, b)</math></span> so <span class="math-inline"><math>A \cup B \neq | + | <p>If <span class="math-inline"><math>c = a</math></span> then this implies that <span class="math-inline"><math>f = b</math></span> (since if <span class="math-inline"><math>d = b</math></span> then <span class="math-inline"><math>A = (a, b)</math></span> which implies that <span class="math-inline"><math>B = \emptyset</math></span>). So if <span class="math-inline"><math>A \cup B = (c, d) \cup (e, f) = (a, d) \cup (e, b) \text{ we must have that } a < d, e < b</math></span>. If <span class="math-inline"><math>d = e</math></span> then <span class="math-inline"><math>A \cup B = (a, d) \cup (d, b)</math></span> and so <span class="math-inline"><math>d \not \in (a, b)</math></span> so <span class="math-inline"><math>A \cup B \neq (a, b)</math></span>. If <span class="math-inline"><math>d < e</math></span> then <span class="math-inline"><math>A \cup B = (a, d) \cup (e, b)</math></span> and <span class="math-inline"><math>(d, e) \not \in (a, b)</math></span> so <span class="math-inline"><math>A \cup B \neq (a, b)</math></span>. If <span class="math-inline"><math>d > e</math></span> then <span class="math-inline"><math>A \cap B = (e, d) \neq \emptyset</math></span>. Either way we see that <span class="math-inline"><math>(a, b) \neq A \cup B</math></span>.</p> |
<p>We can use the same logic for the other cases which will completely show that <span class="math-inline"><math>(a, b)</math></span> is connected.</p> | <p>We can use the same logic for the other cases which will completely show that <span class="math-inline"><math>(a, b)</math></span> is connected.</p> |
Revision as of 11:11, 8 November 2021
Connected and Disconnected Metric Spaces
Definition: A metric space is said to be Disconnected if there exists nonempty open sets and such that and . If is not disconnected then we say that Connected. Furthermore, if then is said to be disconnected/connected if the metric subspace is disconnected/connected.
Intuitively, a set is disconnected if it can be separated into two pieces while a set is connected if it’s an entire piece.
For example, consider the metric space where is the Euclidean metric on . Let , i.e., is an open interval in . We claim that is connected.
Suppose not. Then there exists nonempty open subsets and such that and . Furthermore, and must be open intervals themselves, say and . We must have that . So or and furthermore, or .
If then this implies that (since if then which implies that ). So if . If then and so so . If then and so . If then . Either way we see that .
We can use the same logic for the other cases which will completely show that is connected.