|
|
Line 50: |
Line 50: |
| 4.2 | | 4.2 |
| || <!-- Topics --> | | || <!-- Topics --> |
− | Examples of power series of holomorphic functions. | + | Examples of power series and their formal manipulation. |
| || <!-- SLOs --> | | || <!-- SLOs --> |
| * Review of Taylor coefficients and Taylor series. Radius of convergence. | | * Review of Taylor coefficients and Taylor series. Radius of convergence. |
− | * Differentiation of Taylor series. | + | <!-- * Differentiation of Taylor series. --> |
− | * Taylor series of rational functions. | + | * Power series of rational functions. |
− | * The complex exponential, trigonometric and hyperbolic functions and their Taylor series. | + | * Power series defining the complex exponential, trigonometric and hyperbolic functions. |
| |- <!-- START ROW --> | | |- <!-- START ROW --> |
| | <!-- Week# --> | | | <!-- Week# --> |
Line 66: |
Line 66: |
| || <!-- SLOs --> | | || <!-- SLOs --> |
| * Definition of the multivalued complex natural logarithm, its principal branch, and other branches. | | * Definition of the multivalued complex natural logarithm, its principal branch, and other branches. |
− | * Derivatives of inverse functions. Derivative of the complex natural logarithm. | + | <!-- * Derivatives of inverse functions. Derivative of the complex natural logarithm. --> |
| * Complex powers via logarithms. | | * Complex powers via logarithms. |
| * Definition of branch point and branches. | | * Definition of branch point and branches. |
Line 120: |
Line 120: |
| 10 | | 10 |
| || <!-- Sections --> | | || <!-- Sections --> |
− | 4.2 & 4.3
| + | 7.1 & 7.2 |
| || <!-- Topics --> | | || <!-- Topics --> |
− | * Recursion.
| + | Cauchy's Integral Formula. Taylor series. |
− | * The Binomial Theorem (Binomial Expansion Formula).
| + | <!-- Liouville's Theorem. The Fundamental Theorem of Algebra. --> |
− | || <!-- Prereqs -->
| |
− | * Mathematical Induction.
| |
− | * Inductive proofs.
| |
− | * Factorials.
| |
| || <!-- SLOs --> | | || <!-- SLOs --> |
− | * Recognize recursive definitions of sequences and sets. | + | * Statement and proof of Cauchy's Integral Formula. |
− | * Prove elementary properties of recursively defined sets and sequences (Fibonacci and geometric sequences).
| + | * Existence, uniqueness, and general theory of Taylor series of holomorphic functions. |
− | * Recursively construct successive rows of Pascal's triangle.
| + | * Rigorous definition of and proof that complex logarithms are holomorphic. |
− | * Identify the entries in Pascal's Triangle as Binomial Coefficients. | |
− | * State and apply the Binomial Expansion Formula. | |
− | * Compute individual binomial coefficients using the quotient-of-falling powers formula (n𝑪k) = n(n−1)…(n−k+1)/k!
| |
| |- <!-- START ROW --> | | |- <!-- START ROW --> |
| | <!-- Week# --> | | | <!-- Week# --> |
| 11 | | 11 |
| || <!-- Sections --> | | || <!-- Sections --> |
− | 5.1 & 5.2
| + | None |
| || <!-- Topics --> | | || <!-- Topics --> |
− | * The rational number system 𝐐.
| + | Review. Second midterm exam. |
− | * The real number system 𝐑.
| |
− | * Fractional powers and roots of real numbers.
| |
− | * Rational and irrational numbers. Existence of irrationals.
| |
− | || <!-- Prereqs -->
| |
− | * Divisibility of integers.
| |
− | * Unique factorization and the Fundamental Theorem of Arithmetic.
| |
− | * Decimals and decimal expansions.
| |
− | * Roots and fractional powers of real numbers.
| |
− | || <!-- SLOs -->
| |
− | * Identify the set 𝐐 of rational numbers as a number system (a field).
| |
− | * Identify the set 𝐑 of real numbers as a number system (a field extending 𝐐).
| |
− | * Prove the irrationality of √2 and, more generally, of √p for p prime.
| |
− | * Prove that fractional powers x<sup>m/n</sup> of real x>0 are well defined and unique.
| |
− | * Informally interpret the convergence of decimal expansions as the completeness of 𝐑.
| |
− | * Informally recognize that the universal existence of roots ⁿ√x and fractional powers x<sup>m/n</sup> of real numbers x>0 relies on the completeness of 𝐑.
| |
| |- <!-- START ROW --> | | |- <!-- START ROW --> |
| | <!-- Week# --> | | | <!-- Week# --> |
Course Catalog
MAT 3223. Complex Variables. (3-0) 3 Credit Hours.
Prerequisites: MAT 2214 and MAT 3213. An introduction to complex variables, including elementary functions, line integrals, power series, residues and poles, and conformal mappings. Generally offered: Spring. Differential Tuition: $150.
Textbook: John M. Howie, “Complex Analysis”, Springer Undergraduate Mathematics Series, Springer-Verlag London (2003). ISBN: 978-1-4471-0027-0. [1]
Week |
Sections |
Topics |
Student Learning Outcomes
|
1
|
2.1 & 2.2
|
Introduction to complex numbers, their operations and geometry.
|
- Complex numbers and the complex plane.
- Elementary operations on complex numbers (addition, subtraction, multiplication, division, conjugation, modulus, argument).
- Complex numbers in Cartesian and polar forms.
- Complex operations: Elementary algebraic identities and inequalities.
- Geometric meaning of complex arithmetic operations.
- DeMoivre's Formula.
|
2
|
3.1, 3.2, 3.3
|
Topology of the complex plane. Continuous complex functions.
|
- Essential analysis concepts: sequences, series, limits, convergence, completeness.
- Basic topology of the complex plane: open, closed and punctured discs, open and closed sets, neighborhoods.
- Continuous functions and operations on them.
|
3
|
4.1
|
Complex differentiation
|
- Definition of complex derivative at a point.
- Cauchy-Riemann equations.
- Examples of differentiable and non-differentiable complex functions.
- Holomorphic functions.
|
4
|
4.2
|
Examples of power series and their formal manipulation.
|
- Review of Taylor coefficients and Taylor series. Radius of convergence.
- Power series of rational functions.
- Power series defining the complex exponential, trigonometric and hyperbolic functions.
|
5
|
4.3, 4.5 & 4.5
|
Complex natural logarithms. Multivalued holomorphic functions. Singularities.
|
- Definition of the multivalued complex natural logarithm, its principal branch, and other branches.
- Complex powers via logarithms.
- Definition of branch point and branches.
- Functions holomorphic in punctured neighborhoods. Poles and other singularities.
- Examples of branching and singularities (complex logarithms, inverse trigonometric/hyperbolic functions, and complex powers).
|
6
|
None
|
Review. First midterm exam.
|
|
7
|
5.2 & 5.3
|
Parametric curves. Line integrals.
|
- Parametric representation of piecewise smooth curves.
- Arc-length. Rectifiable curves.
- Line integrals: Definition, examples, and elementary properties.
- Line integrals of holomorphic functions. Fundamental Theorem.
|
8
|
5.4 & 5.5
|
Estimation and convergence of line integrals.
|
- Majorization of path integrals by arclength and bound on magnitude of integrand.
- Antiderivatives of complex functions with path-independent line integrals.
- Uniform and non-uniform convergence of sequences and series of complex functions.
- Continuous uniform limits of continuous sequences and series, and their integrals.
|
9
|
6.1, 6.2, 6.3
|
Cauchy's Theorem and its basic consequences.
|
- Statement of Cauchy's Theorem.
- Proof of Cauchy's Theorem.
- The Deformation Theorem.
|
10
|
7.1 & 7.2
|
Cauchy's Integral Formula. Taylor series.
|
- Statement and proof of Cauchy's Integral Formula.
- Existence, uniqueness, and general theory of Taylor series of holomorphic functions.
- Rigorous definition of and proof that complex logarithms are holomorphic.
|
11
|
None
|
Review. Second midterm exam.
|
12
|
8.1–8.4
|
- Introduction to complex numbers and their operations.
- The complex number system 𝐂.
- The complex plane.
|
- The real number system 𝐑.
- Fractional powers and roots of real numbers.
|
- Represent complex numbers algebraically in Cartesian form.
- Represent complex numbers geometrically as points on a plane.
- Carry out arithmetic operations with complex numbers.
- Interpret the geometric meaning of addition, subtraction and complex conjugation.
- Identify the set 𝐂 of complex numbers as a field extending the real number system 𝐑.
|
13
|
8.5–8.7
|
- Polar form of complex numbers.
- Geometric meaning of complex multiplication and division.
- Powers and roots of complex numbers. De Moivre’s Theorem.
|
- The complex number system 𝐂.
- The complex plane.
- Roots and fractional powers of real numbers.
|
- Represent complex numbers in polar form.
- Algebraically relate the Cartesian and polar forms of a complex number.
- Use the identities cis(𝜃+ɸ) = cis𝜃∙cisɸ and (cis𝜃)n = cis(n𝜃) (De Moivre's formula) for the complex trigonometric function cis𝜃 = cos𝜃 + i∙sin𝜃 to evaluate products and powers both algebraically and geometrically.
- Evaluate all n-th roots of a given complex number both in trigonometric and (when possible) in algebraic closed form, and represent them geometrically.
|
14
|
8.8–9.2
|
- Roots and factors of polynomials. The Remainder Theorem.
- Real and complex roots.
- The Fundamental Theorem of Algebra.
|
- The complex number system 𝐂.
- Powers and roots of complex numbers. De Moivre’s Theorem.
- Polynomials: arithmetic operations, long division, and factorizations.
|
- State and prove the Remainder Theorem.
- Identify roots with linear factors of a polynomial.
- Factor given simple polynomials into irreducible factors over ℚ, ℝ and ℂ.
- State the Fundamental Theorem of Algebra.
- Use the Fundamental Theorem of Algebra to prove that irreducible real polynomials are linear or quadratic.
|