Difference between revisions of "MAT2313"
Jose.iovino (talk | contribs) |
Jose.iovino (talk | contribs) |
||
Line 52: | Line 52: | ||
* Expected Value of a Discrete Random Variable | * Expected Value of a Discrete Random Variable | ||
* Expected Value of a Function of a Discrete Random Variable | * Expected Value of a Function of a Discrete Random Variable | ||
− | * Variance and Standard Deviation | + | * Variance and Standard Deviation |
+ | * Binomial and Multinomial Random Variables | ||
+ | * Poisson Random Variable | ||
+ | * Other Discrete Random Variables (Geometric, Hypergeometric, etc) | ||
|- | |- | ||
− | | | + | | 9-10 |
− | || | + | || [[Continuous Random Variables]] |
− | || | + | || Chapter 6 |
− | + | || | |
− | + | * Distribution Functions | |
− | + | * Expectation, Variance and Standard Deviation | |
− | + | * The Uniform Distribution Function | |
− | + | * Normal Random Variables | |
− | + | * Exponential Random Variables | |
− | + | * Gamma and Beta Distributions | |
− | + | * The Distribution of a Function of a Random Variable | |
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | || | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| 11 | | 11 | ||
− | || | + | || [[Joint Distributions]] |
− | || | + | || Chapter 7 |
− | || | + | || |
+ | * Jointly Distributed Random Variables | ||
+ | * Independent Random Variables | ||
+ | * Sum of Two Independent Random Variables | ||
|- | |- | ||
| 12 | | 12 | ||
− | || | + | || [[Properties of Expectation]] |
− | || | + | || Chapter 8 |
− | || | + | || |
− | + | * Expected Value of a Function of Two Random Variables . . . . . 351 | |
− | + | * Covariance, Variance of Sums, and Correlations . . . . . . . . . 362 | |
− | + | * Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . 376 | |
− | + | * Moment Generating Functions | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | 13-14 |
− | || | + | || [[Limit Theorems]] |
− | || | + | || Chapter 9 |
− | || | + | || |
+ | * The Law of Large Numbers | ||
+ | * The Central Limit Theorem | ||
+ | |||
|} | |} | ||
Revision as of 21:01, 25 March 2023
Foundations of Mathematics (3-0) 3 Credit Hours
Course Catalog
Corequisite: MAT1224.
Content: Permutations, combinations, multinational coefficients, inclusion/exclusion principle, axioms of probability, conditional probability, Bayes formula, independent events, discrete random variables, expected value,m variance, discrete random variables (Bernoulli, Binomial, Poisson, geometric, hypergeometric and Zeta random variables), continuous random variables (uniform, normal and other distributions), joint distributions, properties of expectations, limit theorems (Chebyshev's inequality, Central Limit Theorem, Law of Large Numbers)) Generally offered: Fall, Spring, Summer.
Description
Introduction to the theory of probability, through the study of discrete and continuous random variables.
Sample textbooks
- Modern Mathematical Statistics with Applications (Springer Texts in Statistics). Jay L. Devore and Kenneth N. Berk. Second Edition.
- A Probability Course for the Actuaries: A Preparation for Exam P/1, by Marcel B. Finan. Freely available online.
Topics List
Week | Topic | Sections from Finan's book | Subtopics |
---|---|---|---|
1-2 | Populations and Samples | Chapters 1-2 |
|
3-4 | Probability: Definitions and Properties | Chapter 3 |
|
5 | Conditional Probability and Independence | Chapter 4 |
|
6-8 | Discrete Random Variables | Chapter 5 |
|
9-10 | Continuous Random Variables | Chapter 6 |
|
11 | Joint Distributions | Chapter 7 |
|
12 | Properties of Expectation | Chapter 8 |
|
13-14 | Limit Theorems | Chapter 9 |
|