Sets:Operations

From Department of Mathematics at UTSA
Revision as of 15:53, 26 September 2021 by Lila (talk | contribs) (→‎Definitions)
Jump to navigation Jump to search

Definitions

The two main set operations that we deal with are union and intersection. The union of two sets and is defined as or . For example:

  • The union of and is
  • The union of the even integers and odd integers is .
  • The union of the set of rational numbers and the set of irrational numbers is .
  • , and .
  • For sets and such that , , since all elements of are already in if .

The intersection of and is defined as and ; that is, the intersection of and is the set of all elements shared by the two sets. Sets and are "disjoint" if .

  • The intersection of and is .
  • The intersection of the even integers and odd integers is the empty set, since no element between these two sets is shared (an integer cannot be both even and odd).
  • , and .
  • For sets and such that , .

There are a few other common set operations. The set difference of and is defined as . We read (also sometimes denoted as ) as " without ". Note that this operation is not commutative; that is, does not equal in most cases. Example: if and , then and .

Resources