Integrals Resulting in Inverse Trigonometric Functions
Jump to navigation
Jump to search
Failed to parse (syntax error): {\displaystyle \int\frac{du}{\sqrt{a^2 - u^2}} = \arcsin \left(\frac{u}{a}\right) + C \int\frac{du}{a^2+u^2} =\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right) + C \int\frac{du}{u\sqrt{u^2 - a^2}} =\frac{1}{a}\text{\arcsec} \left(\dfrac{|u|}{a}\right) + C }
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT