Integrals Resulting in Inverse Trigonometric Functions
Jump to navigation
Jump to search
Evaluate the integral
\[ ∫\dfrac{dx}{\sqrt{4−9x^2}}.\nonumber\]
Solution
Substitute \( u=3x\). Then \( du=3\,dx\) and we have
\[ ∫\dfrac{dx}{\sqrt{4−9x^2}}=\dfrac{1}{3}∫\dfrac{du}{\sqrt{4−u^2}}.\nonumber\]
Applying the formula with \( a=2,\) we obtain
\[ ∫\dfrac{dx}{\sqrt{4−9x^2}}=\dfrac{1}{3}∫\dfrac{du}{\sqrt{4−u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\nonumber\]
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT