Integrals Resulting in Inverse Trigonometric Functions
Jump to navigation
Jump to search
Evaluate the integral
Solution
Substitute . Then and we have
Applying the formula with we obtain
Failed to parse (syntax error): {\displaystyle \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\]}
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT