Integrals Resulting in Inverse Trigonometric Functions

From Department of Mathematics at UTSA
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\frac{du}{\sqrt{a^2 - u^2}} = \arcsin \left(\frac{u}{a}\right) + C }


Example 1

Evaluate the integral

Solution

Substitute . Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=3dx} and we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}.}

Applying the formula with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=2, } we obtain

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.}

Example 2

Evaluate \(\displaystyle \int \frac{4-x}{\sqrt{16-x^2}}\ dx\).

Solution

This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:

$$ \int \frac{4-x}{\sqrt{16-x^2}}\ dx = \int \frac{4}{\sqrt{16-x^2}}\ dx - \int \frac{x}{\sqrt{16-x^2}}\ dx.$$

The first integral is handled using a straightforward application of Theorem \(\PageIndex{2}\); the second integral is handled by substitution, with \(u = 16-x^2\). We handle each separately.

\(\displaystyle \int \frac{4}{\sqrt{16-x^2}}\ dx = 4\arcsin\frac{x}{4} + C.\)

\(\displaystyle \int\frac{x}{\sqrt{16-x^2}}\ dx\): Set \(u = 16-x^2\), so \(du = -2xdx\) and \(xdx = -du/2\). We have

\[\begin{align} \int\frac{x}{\sqrt{16-x^2}}\ dx &= \int\frac{-du/2}{\sqrt{u}}\\ &= -\frac12\int \frac{1}{\sqrt{u}}\ du \\ &= - \sqrt{u} + C\\ &= -\sqrt{16-x^2} + C.\end{align}\]

Combining these together, we have

$$ \int \frac{4-x}{\sqrt{16-x^2}}\ dx = 4\arcsin\frac x4 + \sqrt{16-x^2}+C.$$

Resources

Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor

Integrating using Inverse Trigonometric Functions by patrickJMT