Integrals Resulting in Inverse Trigonometric Functions

From Department of Mathematics at UTSA
Revision as of 14:33, 28 October 2021 by Lila (talk | contribs) (→‎Example 2)
Jump to navigation Jump to search

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\frac{du}{\sqrt{a^2 - u^2}} = \arcsin \left(\frac{u}{a}\right) + C }


Example 1

Evaluate the integral

Solution

Substitute . Then and we have

Applying the formula with we obtain

Example 2

Evaluate .

Solution

This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:

/p>

The first integral is handled straightforward; the second integral is handled by substitution, with . We handle each separately.

: Set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = 16-x^2} , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{du} = -2x\text{dx} <math> and <math>x\text{dx} = -\text{du} /2} . We have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\frac{x}{\sqrt{16-x^2}}\text{dx} = \int\frac{-\text{du} /2}{\sqrt{u}}\\ = -\frac12\int \frac{1}{\sqrt{u}}\text{du} \\ = - \sqrt{u} + C\\ = -\sqrt{16-x^2} + C.\end{align}}

Combining these together, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{4-x}{\sqrt{16-x^2}}\text{dx} = 4\arcsin\frac x4 + \sqrt{16-x^2}+C.}

Resources

Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor

Integrating using Inverse Trigonometric Functions by patrickJMT