Compact Sets in a Metric Space
If is a metric space and then a cover or covering of is a collection of subsets in such that:
Furthermore, we said that an open cover (or open covering) is simply a cover that contains only open sets.
We also said that a subset is a subcover/subcovering (or open subcover/subcovering if is an open covering) if is also a cover of , that is:
(2)
We can now define the concept of a compact set using the definitions above.
Definition: Let be a metric space. The subset is said to be Compact if every open covering of has a finite subcovering of .
In general, it may be more difficult to show that a subset of a metric space is compact than to show a subset of a metric space is not compact. So, let's look at an example of a subset of a metric space that is not compact.
Consider the metric space where is the Euclidean metric and consider the set . We claim that this set is not compact. To show that is not compact, we need to find an open covering of that does not have a finite subcovering. Consider the following open covering:
Clearly is an infinite subcovering of and furthermore:
Let be a finite subset of containing elements. Then:
Let . Then due to the nesting of the open covering , we see that:
But for we need . But , so Failed to parse (syntax error): {\displaystyle n^* > 0}
and Failed to parse (syntax error): {\displaystyle \frac{1}{n^*} > 0}
, so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \frac{1}{n^*} < 1}
. Therefore any finite subset of cannot cover . Hence, is not compact.