MAT5123
MAT 5123. Introduction to Cryptography. (3-0) 3 Credit Hours.
Prerequisite: MAT 4213. Congruences and residue class rings, Fermat’s Little Theorem, the Euler phi-function, the Chinese Remainder Theorem, complexity, symmetric-key cryptosystems, cyclic groups, primitive roots, discrete logarithms, one-way functions, public-key cryptosystems, digital signatures, finite fields, and elliptic curves. Differential Tuition: $150. Course Fees: GS01 $90.
Textbook: J. Hoffstein, J. Pipher, J. H. Silverman, An Introduction to Mathematical Cryptography (2nd Ed.) Springer Undergraduate Mathematics Series, Springer-Verlag (2014). ISBN: 978-1-4939-1711-2.
Week | Sections | Topics | Student Learning Outcomes |
---|---|---|---|
1 |
1.2 & 1.3 |
Substitution ciphers and basic theory of divisibility. |
|
2 |
1.4, 1.5. |
Modular arithmetic and finite fields. |
|
3 |
1.7, 2.1–2.3. |
Public and private-key cryptosystems. Cyclic groups. Discrete Logarithms. Diffie-Hellman key exchange. |
|
4 |
2.4, 2.5. 2.6, 2.7. |
Elgamal public-key cryptosystem. Cyclic groups. Collision algorithms. |
|
5 |
2.8, 2.9, 2.10 |
Rudiments of ring theory. The Chinese Remainder Theorem. The Pohlig-Hellman Algorithm. |
|
6 |
None |
Review. First midterm exam. |
|
7 |
3.1, 3.2, 3.3. |
Modular groups of units. The RSA cryptosystem. Practical considerations of security in implementation. |
|
8 |
3.4, 3.5. |
Primality testing and factorization attacks on RSA. |
|
9 |
4.1, 4.2, 4.3 |
Digital Signatures. |
|
10 |
7.1 & 7.2 |
Cauchy's Integral Formula. Taylor series. |
|
11 |
None |
Review. Second midterm exam. | |
12 |
8.1–8.3 |
Isolated singularities and Laurent series. The Residue Theorem. |
|
13 |
Chapter 9. |
Calculus of residues. |
|
14 |
11.1–11.3 |
Conformal mappings. |
|
15 |
Chapter 10. (At instructor's discretion, week 15 may be used to wrap-up and review instead.) |
Complex integration and geometric properties of holomorphic functions |
|