Functions:Bijective

From Department of Mathematics at UTSA
Revision as of 14:52, 27 September 2021 by Lila (talk | contribs)
Jump to navigation Jump to search

A function is bijective if it is both injective and surjective. That is, a bijective function maps each element of the domain to a distinct element in the codomain, and every element in the codomain is mapped to by exactly one element of the domain.

Injective, Surjective, and Bijective arrow diagrams

Examples of bijective functions:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:A\to B, A = \{a, b, c\}, B = \{1, 2, 3\}} such that , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(b) = 2 } , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(c) = 3 }
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\R\to\R, f(x) = 3x + 5 }
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\R\to\R, f(x) = x^3 }

Resources