Arc Length
We can deduce that the length of a curve with parametric equations Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} x=f(t) \\ y=g(t) \end{cases} } , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\le t\le b } should be:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2}dt }
Since vector functions are fundamentally parametric equations with directions, we can utilize the formula above into the length of a space curve.
Arc length of a space curve
If the curve has the vector equation , or, equivalently, the parametric equations , where are continuous, then the length of the curve from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=a} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=b} is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b\sqrt{[f'(t)]^2+[g'(t)]^2+[h'(t)]^2}dt=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2+\biggl(\frac{dx}{dz}\biggr)^2}dt} }}
For those who prefer simplicity, the formula can be rewritten into:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b|\mathbf{r}'(t)|dt\quad } or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad\frac{dL}{dt}=|\mathbf{r}'(t)|}
Resources
- Arc Length and Curvature, OpenStax