Indefinite integral identities
Basic Properties of Indefinite Integrals
Constant Rule for indefinite integrals
- If is a constant then }}
Sum/Difference Rule for indefinite integrals
- }}
Indefinite integrals of Polynomials
Say we are given a function of the form, , and would like to determine the antiderivative of . Considering that
we have the following rule for indefinite integrals:
Power rule for indefinite integrals
- for all
Integral of the Inverse function
To integrate , we should first remember
Therefore, since is the derivative of we can conclude that
Note that the polynomial integration rule does not apply when the exponent is . This technique of integration must be used instead. Since the argument of the natural logarithm function must be positive (on the real line), the absolute value signs are added around its argument to ensure that the argument is positive.
Integral of the Exponential function
Since
we see that is its own antiderivative. This allows us to find the integral of an exponential function:
Integral of Sine and Cosine
Recall that
So is an antiderivative of and is an antiderivative of . Hence we get the following rules for integrating and
Example
Suppose we want to integrate the function . An application of the sum rule from above allows us to use the power rule and our rule for integrating as follows,
|
|
|
|
|
.
|
Recognizing Derivatives and Reversing Derivative Rules
If we recognize a function as being the derivative of a function , then we can easily express the antiderivative of :
For example, since
we can conclude that
Similarly, since we know is its own derivative,
The power rule for derivatives can be reversed to give us a way to handle integrals of powers of . Since
we can conclude that
or, a little more usefully,
Resources