Real Function Limits:One-Sided
In calculus, a one-sided limit is either of the two limits of a function f(x) of a real variable x as x approaches a specified point either from the left or from the right.[1][2]
The limit as x decreases in value approaching a (x approaches a Template:Citation needed span or "from above") can be denoted:
The limit as x increases in value approaching a (x approaches a Template:Citation needed span or "from below") can be denoted:
Template:Citation needed span it is common to use the short notation:
- for the left limit and for the right limit.[3]
The two one-sided limits exist and are equal if the limit of f(x) as x approaches a exists.[3] In some cases in which the limit
does not exist, the two one-sided limits nonetheless exist. Consequently, the limit as x approaches a is sometimes called a "two-sided limit".Template:Citation needed
In some cases one of the two one-sided limits exists and the other does not, and in some cases neither exists.Template:Citation needed
The right-sided limit can be rigorously defined as
and the left-sided limit can be rigorously defined as
where I represents some interval that is within the domain of f.[3][4]Template:Verify source
Examples
One example of a function with different one-sided limits is the following (cf. picture):
whereas
Relation to topological definition of limit
The one-sided limit to a point p corresponds to the general definition of limit, with the domain of the function restricted to one side, by either allowing that the function domain is a subset of the topological space, or by considering a one-sided subspace, including p.[1]Template:Verify source Alternatively, one may consider the domain with a half-open interval topology.Template:Citation needed
Abel's theorem
A noteworthy theorem treating one-sided limits of certain power series at the boundaries of their intervals of convergence is Abel's theorem.Template:Citation needed
Resources
- One-sided limit, Wikipedia