Integration by Parts
Continuing on the path of reversing derivative rules in order to make them useful for integration, we reverse the product rule.
Contents
Integration by parts
If where and are functions of , then
Rearranging,
Therefore,
Therefore,
or
This is the integration by parts formula. It is very useful in many integrals involving products of functions, as well as others.
For instance, to treat
we choose and . With these choices, we have and , and we have
Note that the choice of and was critical. Had we chosen the reverse, so that and , the result would have been
The resulting integral is no easier to work with than the original; we might say that this application of integration by parts took us in the wrong direction.
So the choice is important. One general guideline to help us make that choice is, if possible, to choose to be the factor of the integrand which becomes simpler when we differentiate it. In the last example, we see that does not become simpler when we differentiate it: is no simpler than .
An important feature of the integration by parts method is that we often need to apply it more than once. For instance, to integrate
we start by choosing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x^2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^xdx} to get
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^xdx=x^2e^x-2\int xe^xdx}
Note that we still have an integral to take care of, and we do this by applying integration by parts again, with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^xdx} , which gives us
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^xdx=x^2e^x-2\int xe^xdx=x^2e^x-2(xe^x-e^x)+C=x^2e^x-2xe^x+2e^x+C}
So, two applications of integration by parts were necessary, owing to the power of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2} in the integrand.
Note that any power of x does become simpler when we differentiate it, so when we see an integral of the form
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^nf(x)dx}
one of our first thoughts ought to be to consider using integration by parts with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x^n} . Of course, in order for it to work, we need to be able to write down an antiderivative for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv} .
Example
Use integration by parts to evaluate the integral
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x\sin(x)dx}
Solution: If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v'=e^xdx} , then we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u'=\cos(x)dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x} . Using our rule for integration by parts gives
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x\sin(x)dx=e^x\sin(x)-\int e^x\cos(x)dx}
We do not seem to have made much progress.
But if we integrate by parts again with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v'=e^xdx} and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u'=-\sin(x)dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x} , we obtain
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x\sin(x)dx=e^x\sin(x)-e^x\cos(x)-\int e^x\sin(x)dx}
We may solve this identity to find the anti-derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(x)e^x} and obtain
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x\sin(x)dx=\frac{e^x\big(\sin(x)-\cos(x)\big)}{2}+C}
With definite integral
For definite integrals the rule is essentially the same, as long as we keep the endpoints.
Integration by parts for definite integrals Suppose f and g are differentiable and their derivatives are continuous. Then
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_a^b f(x)g'(x)dx=\big(f(x)g(x)\big)\bigg|_a^b-\int\limits_a^b f'(x)g(x)dx}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =f(b)g(b)-f(a)g(a)-\int\limits_a^b f'(x)g(x)dx} .
This can also be expressed in Leibniz notation.
More Examples
Examples Set 1: Integration by Parts
Exercises
Evaluate the following using integration by parts.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int -4\ln(x)dx}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int (38-7x)\cos(x)dx}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_0^\tfrac{\pi}{2} (-6x+45)\cos(x)dx}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int(5x+1)(x-6)^4 dx}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{-1}^1 (2x+8)^3(2-x)dx}
Exercise Solutions
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4x-4x\ln(x)+C}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (38-7x)\sin(x)-7\cos(x)+C}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 51-3\pi}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(5x+1)(x-6)^5}{5}-\frac{(x-6)^6}{6}+C}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1916.8}
Resources
Videos
Integration by Parts: The Basics by James Sousa
Integration by Parts (After Integration by Parts Basics) by James Sousa
Integration by Parts - Additional Examples by James Sousa
Integration by Parts: The Basics by James Sousa
Deriving the Integration by Parts Formula - Easy! by patrickJMT
Integration by Parts Made Easy! by patrickJMT
Integration by Parts - Indefinite Integral by patrickJMT
Integration By Parts - Using IBP's Twice by patrickJMT
Integration by Parts - A Loopy Example! by patrickJMT
Integration by Parts - Definite Integral by patrickJMT
How does integration by parts work? by Krista King
Integration by Parts by Krista King
Integration by Parts Example 2 by Krista King
Integration by Parts Example 3 by Krista King
Integration by Parts Example 4 by Krista King