Stokes' Theorem
Stokes' Theorem is effectively a generalization of Green's theorem to 3 dimensions, and the "curl" is a generalization of the quantity to 3 dimensions. An arbitrary oriented surface can be articulated into a family of infinitesimal surfaces, some parallel to the xy-plane, others parallel to the zx-plane, and the remainder parallel to the yz-plane. Let denote an arbitrary vector field.
Let be a surface that is parallel to the yz-plane with counter-clockwise oriented boundary . Green's theorem gives:
is positive if the normal direction to points in the positive x direction and is negative if otherwise. If the normal direction to points in the negative x direction, then is oriented clockwise instead of counter-clockwise in the yz-plane.
Decomposing a 3D loop into an ensemble of infinitesimal loops that are parallel to the yz, zx, or xy planes.
Repeating this argument for being parallel to the zx-plane and xy-plane respectively gives:
and
Treating as an ensemble of infinitesimal surfaces parallel to the yz-plane, zx-plane, or xy-plane gives:
This is Stokes' theorem, and
is the "curl" of which generalizes the "circulation density" to 3 dimensions.
The direction of at is effectively an "axis of rotation" around which the counterclockwise circulation density in a plane whose normal is parallel to is . Out of all planes that pass through , the plane whose normal is parallel to has the largest counterclockwise circulation density at which is .
An arbitrary vector field that is differentiable everywhere is considered to be "irrotational" or "conservative" if everywhere, or equivalently that for all continuous closed curves
Conservative vector fields
A vector field for which at all points is an "conservative" vector field. can also be referred to as being "irrotational" since the gain around any closed curve is always 0.
A key property of a conservative vector field is that the gain of along a continuous curve is purely a function of the curve's end points. If and are two continuous curves which share the same starting point and end point , then . In other words, the gain is purely a function of and . This property can be derived from Stokes' theorem as follows:
Invert the orientation of to get and combine and to get a continuous closed curve , linking the curves together at the endpoints and . Let denote a surface for which is the counterclockwise oriented boundary.
Stokes' theorem states that . The gain around is the gain along minus the gain along : . Therefore:
Resources
Conservative Vector Fields
Finding a Potential Function of a Conservative Vector Field
The Fundamental Theorem of Line Integrals