sin θ = x → arcsin r = sin − 1 r = θ {\displaystyle \sin {\theta }=x\to \arcsin {r}=\sin ^{-1}{r}=\theta }
cos θ = r → arccos r = cos − 1 r = θ {\displaystyle \cos {\theta }=r\to \arccos {r}=\cos ^{-1}{r}=\theta }
tan θ = r → arctan r = tan − 1 r = θ {\displaystyle \tan {\theta }=r\to \arctan {r}=\tan ^{-1}{r}=\theta }
csc θ = r → arccsc r = csc − 1 r = θ {\displaystyle \csc {\theta }=r\to \operatorname {arccsc} {r}=\csc ^{-1}{r}=\theta }
sec θ = r → arcsec r = sec − 1 r = θ {\displaystyle \sec {\theta }=r\to \operatorname {arcsec} {r}=\sec ^{-1}{r}=\theta }
sin π 4 =→ arcsin θ = sin − 1 θ = x {\displaystyle \sin {\frac {\pi }{4}}=\to \arcsin {\theta }=\sin ^{-1}{\theta }=x}