Series

From Department of Mathematics at UTSA
Revision as of 14:11, 28 September 2021 by Lila (talk | contribs) (Created page with "Frequently in analysis it is useful to consider the sum of infinitely many numbers. So for some sequence of numbers (''a''<sub>''n''</sub>) we may want to consider expression...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Frequently in analysis it is useful to consider the sum of infinitely many numbers. So for some sequence of numbers (an) we may want to consider expressions like

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n} .

But the exact meaning of this may not be immediately clear. Intuitively we would like to say that the sum of infinitely many numbers should be the number we get close to after we have summed a large number of terms. We will use the notion of the limit of a sequence to make this precise. The standard terminology in the study of series sometimes has room for improvement, but we follow the standard terminology in this section.

Definition

We begin with a sequence (an) of the numbers we would like to sum.

Definition A series of real numbers is an infinite formal sum
where each term an is a real number.

This definition deserves a few comments. The first is that no attempt is being made to define a formal sum. It is possible to define a formal sum simply as the sequence of terms, but this doesn't add any clarity to the discussion. The reason for allowing the series to be formal is merely a matter of convenience. It is frequently easier to refer to a series before it as been determined if there is any number that should represent the sum. This is very similar to the standard practice of saying Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \lim_{n\to\infty}a_n} does not exist - we have only defined the meaning of the symbols Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \lim_{n\to\infty}a_n} in the case when the limit does exist. We should instead say that the sequence an does not converge. However, the meaning of the previous statement is perfectly clear.

Definition The n-th partial sum of a sequence an is defined to be the sum of the first n terms of (an), that is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n=\sum_{i=1}^n a_i=a_1+a_2+\cdots+a_n} .
When the sequence an is being thought of as the terms of a series, then Sn is often called the n-th partial sum of the series.

Often several partial sums may appear in the same argument, so the partial sum is often written simply as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^n a_i} instead of Sn when we wish to avoid confusion.

Definition For a series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \sum_{n=1}^\infty a_n} we define the sum of the series to be the limit of the partial sums. That is, we define:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} a_{n}=\lim_{N\to\infty} \sum_{n=1}^N a_n=\lim_{N\to\infty}S_N} .
If the limit exists we say the series converges, otherwise we say the series diverges.

It should be emphasized when a series diverges, we cannot interpret Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \sum_{n=1}^\infty a_n} as a number, but only as a formal sum. On the other hand when the series does converge, it is often not known what number the series converges to, so this number is usually denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \sum_{n=1}^\infty a_n} . Again this is similar to writing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \lim_{n\to\infty}a_n} before the convergence of the sequence an is established. In practice the meaning of the symbols Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \sum_{n=1}^\infty a_n} is clear from context.

Often it is convenient to sum series starting from some number other than n = 1, and start the series some other point like 0, 2, −10, etc. This hopefully should cause no confusion; the sum of the series is still defined as the limit of the partial sums. Often, it is clear from context where the sum begins. In these cases it is not uncommon to leave the index out of the sigma notation - that is, it is useful to write ∑an for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \sum_{n=1}^\infty a_n}

Examples

  • The notion of an infinite sum can be a little more subtle than it first appears. For example, consider the sequence an = (−1)n. Does the sum of the an converge or diverge? We could consider the partial sums SN, which are 1 if N is odd and 0 if N is even. So it seems the series diverges. On the other hand, 1 − 1 + 1 − 1 + 1 − 1 + … = (1 − 1) + (1 − 1) + (1 − 1) + … = 0 + 0 + 0 + … = 0. Does then the series diverge or converge to 0, according to our theory? The answer is it diverges; the fallacy in the previous sentence was in asserting that 1 − 1 + 1 − 1 + 1 − 1 + … = (1 − 1) + (1 − 1) + (1 − 1) + …. It is no longer true that for infinite series that we may sum in any order we choose; we must justify why we are allowed to group the +1's together with the -1's without changing the sum. Stated formally, associativity does not necessarily hold for infinite series. We will investigate when it is possible to rearrange the elements of a series and still get the same sum.
  • Perhaps the most familiar examples of series come from decimal expansions of real numbers. While we have not given a rigorous definition of decimal expansions here, it can be shown that every real number r can be expressed in the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle r = \sum_{n=0}^{\infty} \frac{a_n}{10^n}} where an ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
  • Consider the series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \tfrac{1}{1\cdot 2}+\tfrac{1}{2\cdot 3}+\tfrac{1}{3\cdot 4}\cdots=\sum_{n=1}^\infty\tfrac{1}{n(n+1)}} . At first it may seem difficult to determine the partial sums and decide whether or not the series converges. However, it turns out that this series is nicer than it first appears, since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}.} Thus

    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^N \frac{1}{n(n+1)}=\sum_{n=1}^N \frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{N}-\frac{1}{N+1}=1-\frac{1}{N+1}.}

    Thus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \lim_{N\to\infty}\sum_{n=1}^N\tfrac{1}{n(n+1)}=\lim_{N\to\infty}(1-\tfrac{1}{N+1})=1.} This is an example of a telescoping series - that is, a series that can be written in the form such that the next term cancels with the previous terms. That is,
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}a_n-a_{n+1}}
    For all such series the partial sums are given by SN = a1 − aN+1. That is, the terms of the series collapse like a telescope, leaving only the first and last. Such a series converges to a1 − lim aN+1.
  • Another important example of a series is the geometric series given by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} r^n } . The partial sums for the geometric series first appear quite complicated. At first glance the partial sums would just appear to be SN = 1 + r +r2 + … + rN, but if we calculate (1 − r)SN then the sum telescopes and we are left with (1 − r)SN = (1 − r)N+1. Notice that this sum holds for any r or N, so we conclude that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle S_N=\tfrac{1-r^{N+1}}{1-r}} . Thus a geometric series converges if |r| < 1.