Arc Length

From Department of Mathematics at UTSA
Revision as of 13:58, 1 October 2021 by Lila (talk | contribs)
Jump to navigation Jump to search

We can deduce that the length of a curve with parametric equations , should be:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2}dt }

Since vector functions are fundamentally parametric equations with directions, we can utilize the formula above into the length of a space curve.

Arc length of a space curve

If the curve has the vector equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r}(t)=\langle f(t),g(t),h(t)\rangle,a\le t\le b} , or, equivalently, the parametric equations Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=f(t),y=g(t),z=h(t)} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f',g',h'} are continuous, then the length of the curve from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=a} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=b} is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b\sqrt{[f'(t)]^2+[g'(t)]^2+[h'(t)]^2}dt=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2+\biggl(\frac{dx}{dz}\biggr)^2}dt} }}

For those who prefer simplicity, the formula can be rewritten into:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b|\mathbf{r}'(t)|dt\quad } or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad\frac{dL}{dt}=|\mathbf{r}'(t)|}

Resources