Green's Theorem

From Department of Mathematics at UTSA
Revision as of 14:14, 1 October 2021 by Lila (talk | contribs)
Jump to navigation Jump to search

Green's Theorem

Error creating thumbnail:
A demonstration of how a large loop can be decomposed into a family of infinitesimal loops.

Quantifying "circulation density" is best introduced in 2 dimensions. Given a large counter-clockwise oriented loop that is confined to 2 dimensions, can be decomposed into a family of infinitesimal loops as shown on the right. Boundaries that are common to adjacent loops cancel each other out due to their opposite orientations, so the total circulation around is the sum of the circulations around each infinitesimal loop.

An infinitesimal rectangular loop.

Consider the infinitesimal rectangle . Let be an arbitrary point inside the rectangle, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x = x_u - x_l} and , and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial R} be the counterclockwise boundary of .

The circulation around Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial R} is approximately (the relative error vanishes as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x, \Delta y \rightarrow 0^+} ):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\mathbf{q} \in \partial R} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} \approx \mathbf{F}(x_u,y_c) \cdot (+\Delta y \mathbf{j}) + \mathbf{F}(x_c,y_u) \cdot (-\Delta x \mathbf{i}) + \mathbf{F}(x_l,y_c) \cdot (-\Delta y \mathbf{j}) + \mathbf{F}(x_c,y_l) \cdot (+\Delta x \mathbf{i}) } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = F_y(x_u,y_c)\Delta y - F_x(x_c,y_u)\Delta x - F_y(x_l,y_c)\Delta y + F_x(x_c,y_l)\Delta x } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \left(\frac{F_y(x_u,y_c)-F_y(x_l,y_c)}{\Delta x} - \frac{F_x(x_c,y_u)-F_x(x_c,y_l)}{\Delta y}\right)\Delta x \Delta y} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \approx \left(\frac{\partial F_y}{\partial x}\bigg|_{(x_c,y_c)} - \frac{\partial F_x}{\partial y}\bigg|_{(x_c,y_c)}\right)\Delta x \Delta y} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \approx \iint_R \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)dxdy }

As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x, \Delta y \rightarrow 0^+} , the relative errors present in the approximations vanish, and therefore, for an infinitesimal rectangle, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\mathbf{q} \in \partial R} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \iint_{\mathbf{q} \in R} \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)dxdy }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}} is the "circulation density" at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_c, y_c)} . Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} be a counter-clockwise oriented loop with interior Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} . The circulation around loop is the total circulation contained by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\mathbf{q} \in C} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \iint_{\mathbf{q} \in D} \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)dxdy } . This is Green's theorem.


Resources