Volumes of Revolution, Cylindrical Shells
In this section we cover solids of revolution and how to calculate their volume. A solid of revolution is a solid formed by revolving a 2-dimensional region around an axis. For example, revolving the semi-circular region bounded by the curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sqrt{1-x^2}} and the line around the -axis produces a sphere. There are two main methods of calculating the volume of a solid of revolution using calculus: the disk method and the shell method.
Contents
Disk Method
Consider the solid formed by revolving the region bounded by the curve , which is continuous on , and the lines , and around the -axis. We could imagine approximating the volume by approximating with the stepwise function shown in figure 2, which uses a right-handed approximation to the function. Now when the region is revolved, the region under each step sweeps out a cylinder, whose volume we know how to calculate, i.e.
where is the radius of the cylinder and is the cylinder's height. This process is reminiscent of the Riemann process we used to calculate areas earlier. Let's try to write the volume as a Riemann sum and from that equate the volume to an integral by taking the limit as the subdivisions get infinitely small.
Consider the volume of one of the cylinders in the approximation, say the -th one from the left. The cylinder's radius is the height of the step function, and the thickness is the length of the subdivision. With subdivisions and a length of for the total length of the region, each subdivision has width
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x=\frac{b-a}{n}}
Since we are using a right-handed approximation, the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} -th sample point will be
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k=k\Delta x}
So the volume of the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} -th cylinder is
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_k=\pi f(x_k)^2\Delta x}
Summing all of the cylinders in the region from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} , we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{\rm approx}=\sum_{k=1}^n \pi f(x_k)^2\Delta x}
Taking the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} approaches infinity gives us the exact volume
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=\lim_{n\to\infty}\sum_{k=1}^n \pi f(x_k)^2\Delta x}
which is equivalent to the integral
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=\int\limits_a^b \pi f(x)^2dx}
Template:ExampleRobox Let's calculate the volume of a sphere using the disk method. Our generating region will be the region bounded by the curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sqrt{r^2-x^2}} and the line Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0} . Our limits of integration will be the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -values where the curve intersects the line Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0} , namely, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\pm r} . We have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}V_{\rm sphere}&=\int\limits_{-r}^r \pi(r^2-x^2)dx\\ &=\pi\left(\int\limits_{-r}^r r^2dx-\int\limits_{-r}^r x^2dx\right)\\ &=\pi\left(r^2 x\bigg|_{-r}^r-\frac{x^3}{3}\bigg|_{-r}^r\right)\\ &=\pi\Big(r^2\bigl(r-(-r)\bigr)-\tfrac{1}{3}\bigl(r^3-(-r)^3\bigr)\Big)\\ &=\pi\left(2r^3-\frac{2r^3}{3}\right)\\ &=\pi\frac{6r^3-2r^3}{3}\\ &=\frac{4\pi}{3}r^3 \end{align}}
Exercises
Template:Question-answer Template:Noprint
Washer Method
The washer method is an extension of the disk method to solids of revolution formed by revolving an area bounded between two curves around the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis. Consider the solid of revolution formed by revolving the region in figure 3 around the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis. The curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is the same as that in figure 1, but now our solid has an irregularly shaped hole through its center whose volume is that of the solid formed by revolving the curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)} around the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis. Our approximating region has the same upper boundary, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{\rm step}(x)} as in figure 2, but now we extend only down to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{\rm step}(x)} rather than all the way down to the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis. Revolving each block around the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis forms a washer-shaped solid with outer radius Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{\rm step}(x)} and inner radius Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{\rm step}(x)} . The volume of the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} -th hollow cylinder is
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}V_k&=\pi\cdot f(x_k)^2\Delta x-\pi\cdot g(x_k)^2\Delta x\\ &=\pi\bigl(f(x_k)^2-g(x_k)^2\bigr)\Delta x\end{align}}
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x=\frac{b-a}{n}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k=k\Delta x} . The volume of the entire approximating solid is
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{\rm approx}=\sum_{k=1}^n \pi\bigl(f(x_k)^2-g(x_k)^2\bigr)\Delta x}
Taking the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} approaches infinity gives the volume
Exercises
Template:Question-answer Template:Noprint
Shell Method
The shell method is another technique for finding the volume of a solid of revolution. Using this method sometimes makes it easier to set up and evaluate the integral. Consider the solid of revolution formed by revolving the region in figure 5 around the -axis. While the generating region is the same as in figure 1, the axis of revolution has changed, making the disk method impractical for this problem. However, dividing the region up as we did previously suggests a similar method of finding the volume, only this time instead of adding up the volume of many approximating disks, we will add up the volume of many cylindrical shells. Consider the solid formed by revolving the region in figure 6 around the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis. The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} -th rectangle sweeps out a hollow cylinder with height Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Big|f(x_k)\Big|} and with inner radius Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} and outer radius Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k+\Delta x} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x=\frac{b-a}{n}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k=k\Delta x} , the volume of which is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_k} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\pi\bigl((x_k+\Delta x)^2-x_k^2\bigr)\Big|f(x_k)\Big|} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\pi\bigl((x_k^2+2x_k\Delta x+\Delta x^2)-x_k^2\bigr)\Big|f(x_k)\Big|} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\pi(2x_k\Delta x+\Delta x^2)\Big|f(x_k)\Big|}
The volume of the entire approximating solid is
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{\rm approx}=\sum_{k=1}^n \pi(2x_k\Delta x+\Delta x^2)\Big|f(x_k)\Big|}
Taking the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} approaches infinity gives us the exact volume
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\lim_{n\to\infty}\sum_{k=1}^n \pi(2x_k\Delta x+\Delta x^2)\Big|f(x_k)\Big|} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\pi\cdot\lim_{n\to\infty}\left(\sum_{k=1}^n 2x_k\Delta x\Big|f(x_k)\Big|+\sum_{k=1}^n \Delta x^2\Big|f(x_k)\Big|\right)}
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |f|} is continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} , the Extreme Value Theorem implies that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |f|} has some maximum, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} , on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} . Using this and the fact that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x^2\Big|f(x_k)\Big|>0} , we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\sum_{k=1}^n 2x_k\Delta x\Big|f(x_k)\Big|\le\sum_{k=1}^n 2x_k\Delta x\Big|f(x_k)\Big|+\sum_{k=1}^n \Delta x^2\Big|f(x_k)\Big|\le\sum_{k=1}^n 2x_k\Delta x\Big|f(x_k)\Big|+\sum_{k=1}^n \Delta x^2M}}
But
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\to\infty}\sum_{k=1}^n \Delta x^2M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\lim_{n\to\infty}\sum_{k=1}^n \left(\frac{b-a}{n}\right)^2M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\lim_{n\to\infty}\frac{(b-a)^2}{n}M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =0}
So by the Squeeze Theorem
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi\cdot\lim_{n\to\infty}\left(\sum_{k=1}^n 2x_k\Delta x\Big|f(x_k)\Big|+\sum_{k=1}^n \Delta x^2\Big|f(x_k)\Big|\right)=\pi\cdot\lim_{n\to\infty}\sum_{k=1}^n 2x_k\Delta x\Big|f(x_k)\Big|}
which is just the integral
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_a^b 2\pi x\Big|f(x)\Big|dx}
Resources
- Volume of Solids of Revolution, WikiBooks: Calculus
Videos
Volume of Revolution - The Shell Method about the x-axis by James Sousa, Math is Power 4U
Volume of Revolution - The Shell Method about the y-axis by James Sousa, Math is Power 4U
Volume of Revolution - The Shell Method Not about the x or y axis by James Sousa, Math is Power 4U
Volume of Revolution - Comparing the Washer and Shell Method by James Sousa
Ex: Determine a Volume of Revolution Using the Shell Method by James Sousa, Math is Power 4U
Ex: Volume of Revolution Using the Shell Method by James Sousa, Math is Power 4U
Ex: Volume of Revolution Using the Shell Method by James Sousa, Math is Power 4U
Ex: Volume of Revolution Using the Shell Method by James Sousa, Math is Power 4U
Ex: Volume of Revolution Using the Shell Method by James Sousa, Math is Power 4U
Ex: Volume of Revolution Using the Shell Method with Horizontal Axis by James Sousa, Math is Power 4U
Ex: Volume of Revolution Using the Shell Method with Vertical Axis by James Sousa, Math is Power 4U
Shell Method for Rotating Around Vertical Line by Khan Academy
Shell Method for Rotating Around Horizontal Line by Khan Academy
Shell Method with Two Functions of x by Khan Academy
Shell Method with Two Functions of y by Khan Academy
Volumes of Revolution using Cylindrical Shells by patrickJMT
Volume of Rotation: Cylindrical Shells about the y-axis or x= by Krista King
Volume of Rotation: Cylindrical Shells about the x-axis or y= by Krista King
Shell Method - Volume of Revolution by The Organic Chemistry Tutor