Arc Length and Surface Area
Suppose that we are given a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} that is continuous on an interval and we want to calculate the length of the curve drawn out by the graph of from to . If the graph were a straight line this would be easy — the formula for the length of the line is given by Pythagoras' theorem. And if the graph were a piecewise linear function we can calculate the length by adding up the length of each piece.
The problem is that most graphs are not linear. Nevertheless we can estimate the length of the curve by approximating it with straight lines. Suppose the curve is given by the formula for . We divide the interval into subintervals with equal width and endpoints . Now let so is the point on the curve above . The length of the straight line between and is
So an estimate of the length of the curve is the sum
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^{n-1}\bigl|P_iP_{i+1}\bigr|}
As we divide the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} into more pieces this gives a better estimate for the length of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} . In fact we make that a definition.
Contents
The Arclength Formula
Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'} is continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} . Then the length of the curve given by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} is given by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int\limits_a^b \sqrt{1+f'(x)^2}dx}
And in Leibniz notation
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int\limits_a^b \sqrt{1+\left(\tfrac{dy}{dx}\right)^2}dx}
Proof: Consider Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{i+1}-y_i=f(x_{i+1})-f(x_i)} . By the Mean Value Theorem there is a point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_i} in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_{i+1},x_i)} such that
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{i+1}-y_i=f(x_{i+1})-f(x_i)=f'(z_i)(x_{i+1}-x_i)}
So
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigl|P_iP_{i+1}\bigr|} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{(x_{i+1}-x_i)^2+(y_{i+1}-y_i)^2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{(x_{i+1}-x_i)^2+f'(z_i)^2(x_{i+1}-x_i)^2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{\bigl(1+f'(z_i)^2\bigr)(x_{i+1}-x_i)^2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{1+f'(z_i)^2}\Delta x}
Putting this into the definition of the length of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} gives
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\lim_{n\to\infty}\sum_{i=0}^{n-1}\sqrt{1+f'(z_i)^2}\Delta x}
Now this is the definition of the integral of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sqrt{1+f'(x)^2}} between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} (notice that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} is continuous because we are assuming that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'} is continuous). Hence
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int\limits_a^b \sqrt{1+f'(x)^2}dx}
as claimed.
Template:ExampleRobox As a sanity check of our formula, let's calculate the length of the "curve" Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=2x} from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1} . First let's find the answer using the Pythagorean Theorem.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_0=(0,0)}
and
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1=(1,2)}
so the length of the curve, , is
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=\sqrt{2^2+1^2}=\sqrt5}
Now let's use the formula
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=\int\limits_0^1 \sqrt{1+\left(\tfrac{d(2x)}{dx}\right)^2}\,dx=\int\limits_0^1 \sqrt{1+2^2}\,dx=\sqrt5x\bigg|_0^1=\sqrt5}
Exercises
Template:Question-answer Template:Noprint
Arclength of a parametric curve
For a parametric curve, that is, a curve defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=f(t)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=g(t)} , the formula is slightly different:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int\limits_a^b \sqrt{f'(t)^2+g'(t)^2}\,dt}
Proof: The proof is analogous to the previous one: Consider Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{i+1}-y_i=g(t_{i+1})-g(t_i)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i+1}-x_i=f(t_{i+1})-f(t_i)} .
By the Mean Value Theorem there are points Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_i} in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t_{i+1},t_i)} such that
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{i+1}-y_i=g(t_{i+1})-g(t_i)=g'(c_i)(t_{i+1}-t_i)}
and
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i+1}-x_i=f(t_{i+1})-f(t_i)=f'(d_i)(t_{i+1}-t_i)}
So
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigl|P_iP_{i+1}\bigr|} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{(x_{i+1}-x_i)^2+(y_{i+1}-y_i)^2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{f'(d_i)^2(t_{i+1}-t_i)^2+g'(c_i)^2(t_{i+1}-t_i)^2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{\bigl(f'(d_i)^2+g'(c_i)^2\bigr)(t_{i+1}-t_i)^2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{f'(d_i)^2+g'(c_i)^2}\Delta t}
Putting this into the definition of the length of the curve gives
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\lim_{n\to\infty}\sum_{i=0}^{n-1}\sqrt{f'(d_i)^2+g'(c_i)^2}\Delta t}
This is equivalent to:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int\limits_a^b \sqrt{f'(t)^2+g'(t)^2}\,dt}
Exercises
Resources
Arc Length
- Arc Length - Part 1 of 2 by James Sousa, Math is Power 4U
- Arc Length - Part 2 of 2 by James Sousa, Math is Power 4U
- Ex: Find the Arc Length of a Linear Function by James Sousa, Math is Power 4U
- Ex: Find the Arc Length of a Radical Function by James Sousa, Math is Power 4U
- Ex: Find the Arc Length of a Quadratic Function by James Sousa, Math is Power 4U
- Deriving the Arc Length Formula in Calculus by patrickJMT
- Arc Length by patrickJMT
- Arc Length y=f(x) by Krista King
- Arc length x=g(y) by Krista King
- Arc Length Intro by Khan Academy
- Arc Length Example by Khan Academy
- Arc Length Example by Khan Academy
- Arc Length by The Organic Chemistry Tutor
Surface Area
- Surface Area of Revolution - Part 1 of 2 by James Sousa, Math is Power 4U
- Surface Area of Revolution - Part 2 of 2 by James Sousa, Math is Power 4U
- Ex: Surface Area of Revolution - Linear Function by James Sousa, Math is Power 4U
- Ex: Surface Area of Revolution - Sine Function by James Sousa, Math is Power 4U
- Ex: Surface Area of Revolution - Cubic Function About x-axis by James Sousa, Math is Power 4U
- Ex: Surface Area of Revolution - Square Root Function About x-axis by James Sousa, Math is Power 4U
- Ex: Surface Area of Revolution - Quadratic Function About y-axis by James Sousa, Math is Power 4U
- Ex: Surface Area of Revolution - Cube Root Function About y-axis by James Sousa, Math is Power 4U
- Finding Surface Area - Part 1 by patrickJMT
- Finding Surface Area - Part 2 by patrickJMT
- Surface Area of Revolution Example 1 by Krista King
- Surface Area of Revolution Example 2 by Krista King
- Surface Area of Revolution Example 3 by Krista King
- Surface Area of Revolution By Integration by The Organic Chemistry Tutor