Neighborhoods in 𝐑

From Department of Mathematics at UTSA
Revision as of 14:07, 20 October 2021 by Lila (talk | contribs)
Jump to navigation Jump to search

The Real Number Line

One way to represent the real numbers is on the real number line as depicted below.

Real number line

We will now state the important geometric representation of the absolute value with respect to the real number line.

Definition: If and are real numbers, then we say that the distance from to the origin is the absolute value of , . We say that the distance between and is the absolute value of their difference, namely .

For example consider the numbers and . There is a distance of in between these numbers because .

Epsilon Neighbourhood of a Real Number

Definition: Let be a real number and let . The -neighbourhood of the number is the set denoted . Alternatively we can define .

For example, consider the point , and let . Then .

We will now look at a simple theorem regarding the epsilon-neighbourhood of a real number.

Theorem 1: Let be a real number. If , then .
  • Proof of Theorem 1: Suppose that for some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall \varepsilon > 0} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid x - a \mid < \varepsilon} . We know that then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid x - a \mid = 0} if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x - a = 0} and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = a} . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \blacksquare}