Uniform Convergence of Series of Functions

From Department of Mathematics at UTSA
Revision as of 12:32, 27 October 2021 by Lila (talk | contribs) (Created page with "==Pointwise Convergent and Uniformly Convergent Series of Functions== <p>Recall that a sequence of functions <math>(f_n(x))_{n=1}^{\infty}</math> with common domain <math>X</m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Pointwise Convergent and Uniformly Convergent Series of Functions

Recall that a sequence of functions with common domain is said to be pointwise convergent if for all and for all there exists an such that if then:

Also recall that a sequence of functions with common domain is said to be uniformly convergent if for all there exists an such that if then for all we have that:

We will now extend the concept of pointwise convergence and uniform convergence to series of functions.

Definition: Let be a sequence of functions with common domain . The corresponding series is said to be Pointwise Convergent to the sum function if the corresponding sequence of partial sums (where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{s_n(x) = \sum_{k=1}^n f_n(x) = f_1(x) + f_2(x) + ... + f_n(x)}} ) is pointwise convergent to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} .

For example, consider the following sequence of functions defined on the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1, 1)} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad (f_n(x))_{n=1}^{\infty} = (x^{n-1})_{n=1}^{\infty} = (1, x, x^2, x^3, ...) \end{align}}

We now that this series converges pointwise for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in (0, 1)} since the result series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} x^{n-1}} is simply a geometric series to the sum function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{f(x) = \frac{1}{1 - x}}} .

Definition: Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f_n(x))_{n=1}^{\infty}} be a sequence of functions with common domain Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} . The corresponding series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\sum_{n=1}^{\infty} f_n(x)}} is said to be Uniformly Convergent to the sum function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} if the corresponding sequence of partial sums is uniformly convergent to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} .

The geometric series given above actually converges uniformly on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1, 1)} , though, showing this with the current definition of uniform convergence of series of functions is laborious. We will soon develop methods to determine whether a series of functions converges uniformly or not without having to brute-force apply the definition for uniform convergence for the sequence of partial sums.


Licensing

Content obtained and/or adapted from: