Integrals Resulting in Inverse Trigonometric Functions
Evaluate the integral
Failed to parse (syntax error): {\displaystyle \[ ∫\dfrac{dx}{\sqrt{4−9x^2}}.\nonumber\]}
Solution
Substitute Failed to parse (syntax error): {\displaystyle \( u=3x\)} . Then Failed to parse (syntax error): {\displaystyle \( du=3\,dx\)} and we have
Failed to parse (syntax error): {\displaystyle \[ ∫\dfrac{dx}{\sqrt{4−9x^2}}=\dfrac{1}{3}∫\dfrac{du}{\sqrt{4−u^2}}.\nonumber\]}
Applying the formula with Failed to parse (syntax error): {\displaystyle \( a=2,\)} we obtain
Failed to parse (syntax error): {\displaystyle \[ ∫\dfrac{dx}{\sqrt{4−9x^2}}=\dfrac{1}{3}∫\dfrac{du}{\sqrt{4−u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\nonumber\]}
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT