Integrals Resulting in Inverse Trigonometric Functions
Evaluate the integral
Failed to parse (syntax error): {\displaystyle \[ \int\dfrac{dx}{\sqrt{4 - 9x^2}}.\]}
Solution
Substitute Failed to parse (syntax error): {\displaystyle \( u=3x\)} . Then Failed to parse (syntax error): {\displaystyle \( du=3\,dx\)} and we have
Failed to parse (syntax error): {\displaystyle \[ \int;\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}.\nonumber\]}
Applying the formula with Failed to parse (syntax error): {\displaystyle \( a=2,\)} we obtain
Failed to parse (syntax error): {\displaystyle \[ \int;\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\]}
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT