Properties of Power Series

From Department of Mathematics at UTSA
Revision as of 13:39, 29 October 2021 by Lila (talk | contribs) (→‎Resources)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Addition and subtraction

When two functions f and g are decomposed into power series around the same center c, the power series of the sum or difference of the functions can be obtained by termwise addition and subtraction. That is, if

and

then

It is not true that if two power series and have the same radius of convergence, then also has this radius of convergence. If and , then both series have the same radius of convergence of 1, but the series has a radius of convergence of 3.

Multiplication and division

With the same definitions for and , the power series of the product and quotient of the functions can be obtained as follows:

The sequence is known as the convolution of the sequences and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n} .

For division, if one defines the sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_n} by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x)}{g(x)} = \frac{\sum_{n=0}^\infty a_n (x - c)^n}{\sum_{n=0}^\infty b_n (x - c)^n} = \sum_{n=0}^\infty d_n (x - c)^n}

then

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left(\sum_{n=0}^\infty b_n (x - c)^n\right)\left(\sum_{n=0}^\infty d_n (x - c)^n\right)}

and one can solve recursively for the terms Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_n} by comparing coefficients.

Solving the corresponding equations yields the formulae based on determinants of certain matrices of the coefficients of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_0=\frac{a_0}{b_0}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_n=\frac{1}{b_0^{n+1}} \begin{vmatrix} a_n &b_1 &b_2 &\cdots&b_n \\ a_{n-1}&b_0 &b_1 &\cdots&b_{n-1}\\ a_{n-2}&0 &b_0 &\cdots&b_{n-2}\\ \vdots &\vdots&\vdots&\ddots&\vdots \\ a_0 &0 &0 &\cdots&b_0\end{vmatrix}}

Differentiation and integration

Once a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is given as a power series as above, it is differentiable on the interior of the domain of convergence. It can be differentiated and integrated quite easily, by treating every term separately:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} f'(x) &= \sum_{n=1}^\infty a_n n (x - c)^{n-1} = \sum_{n=0}^\infty a_{n+1} (n + 1) (x - c)^n, \\ \int f(x)\,dx &= \sum_{n=0}^\infty \frac{a_n (x - c)^{n+1}}{n + 1} + k = \sum_{n=1}^\infty \frac{a_{n-1} (x - c)^n}{n} + k. \end{align}}

Both of these series have the same radius of convergence as the original one.

Resources

Differentiation and Integration of Power Series

Power Series Representation of Functions Using Differentiation and Integration

Licensing

Content obtained and/or adapted from: