Diagonalization of Matrices

From Department of Mathematics at UTSA
Revision as of 16:37, 2 November 2021 by Lila (talk | contribs) (→‎Resources)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The prior subsection defines the relation of similarity and shows that, although similar matrices are necessarily matrix equivalent, the converse does not hold. Some matrix-equivalence classes break into two or more similarity classes (the nonsingular Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \! \times \! n} matrices, for instance). This means that the canonical form for matrix equivalence, a block partial-identity, cannot be used as a canonical form for matrix similarity because the partial-identities cannot be in more than one similarity class, so there are similarity classes without one. This picture illustrates. As earlier in this book, class representatives are shown with stars.

Linalg matrix similarity equiv classes 2.png

We are developing a canonical form for representatives of the similarity classes. We naturally try to build on our previous work, meaning first that the partial identity matrices should represent the similarity classes into which they fall, and beyond that, that the representatives should be as simple as possible. The simplest extension of the partial-identity form is a diagonal form.

Definition 2.1:

A transformation is diagonalizable if it has a diagonal representation with respect to the same basis for the codomain as for the domain. A diagonalizable matrix is one that is similar to a diagonal matrix: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is diagonalizable if there is a nonsingular Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P } such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle PTP^{-1} } is diagonal.

Example 2.2: The matrix

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 4 &-2 \\ 1 &1 \end{pmatrix} }

is diagonalizable.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 2 &0 \\ 0 &3 \end{pmatrix} = \begin{pmatrix} -1 &2 \\ 1 &-1 \end{pmatrix} \begin{pmatrix} 4 &-2 \\ 1 &1 \end{pmatrix} \begin{pmatrix} -1 &2 \\ 1 &-1 \end{pmatrix}^{-1} }

Example 2.3: Not every matrix is diagonalizable. The square of

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N=\begin{pmatrix} 0 &0 \\ 1 &0 \end{pmatrix} }

is the zero matrix. Thus, for any map Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } represents (with respect to the same basis for the domain as for the codomain), the composition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\circ n } is the zero map. This implies that no such map Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n } can be diagonally represented (with respect to any Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B,B} ) because no power of a nonzero diagonal matrix is zero. That is, there is no diagonal matrix in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} 's similarity class.

That example shows that a diagonal form will not do for a canonical form— we cannot find a diagonal matrix in each matrix similarity class. However, the canonical form that we are developing has the property that if a matrix can be diagonalized then the diagonal matrix is the canonical representative of the similarity class. The next result characterizes which maps can be diagonalized.

Corollary 2.4:

A transformation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t } is diagonalizable if and only if there is a basis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=\langle \vec{\beta}_1,\ldots,\vec{\beta}_n \rangle } and scalars Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1,\ldots,\lambda_n } such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t(\vec{\beta}_i)=\lambda_i\vec{\beta}_i } for each Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i } .

Proof: This follows from the definition by considering a diagonal representation matrix.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Rep}_{B,B}(t)= \left(\begin{array}{c|c|c} \vdots & &\vdots \\ {\rm Rep}_{B}(t(\vec{\beta}_1)) &\cdots &{\rm Rep}_{B}(t(\vec{\beta}_n)) \\ \vdots & &\vdots \end{array}\right) = \left(\begin{array}{c|c|c} \lambda_1 & &0 \\ \vdots &\ddots &\vdots \\ 0 & &\lambda_n \end{array}\right) }

This representation is equivalent to the existence of a basis satisfying the stated conditions simply by the definition of matrix representation.


Example 2.5: To diagonalize

we take it as the representation of a transformation with respect to the standard basis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T={\rm Rep}_{\mathcal{E}_2,\mathcal{E}_2}(t)} and we look for a basis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=\langle \vec{\beta}_1,\vec{\beta}_2 \rangle } such that

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Rep}_{B,B}(t) = \begin{pmatrix} \lambda_1 &0 \\ 0 &\lambda_2 \end{pmatrix} }

that is, such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t(\vec{\beta}_1)=\lambda_1\vec{\beta}_1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t(\vec{\beta}_2)=\lambda_2\vec{\beta}_2} .

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 3 &2 \\ 0 &1 \end{pmatrix} \vec{\beta}_1=\lambda_1\cdot\vec{\beta}_1 \qquad \begin{pmatrix} 3 &2 \\ 0 &1 \end{pmatrix} \vec{\beta}_2=\lambda_2\cdot\vec{\beta}_2 }

We are looking for scalars Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x } such that this equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 3 &2 \\ 0 &1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}=x\cdot\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} }

has solutions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2} , which are not both zero. Rewrite that as a linear system.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{*{2}{rc}r} (3-x)\cdot b_1 &+ &2\cdot b_2 &= &0 \\ & &(1-x)\cdot b_2 &= &0 \end{array} \qquad (*)}

In the bottom equation the two numbers multiply to give zero only if at least one of them is zero so there are two possibilities, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2=0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1} . In the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2=0 } possibility, the first equation gives that either Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1=0} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3 } . Since the case of both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1=0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2=0} is disallowed, we are left looking at the possibility of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3} . With it, the first equation in (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\cdot b_1+2\cdot b_2=0} and so associated with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} are vectors with a second component of zero and a first component that is free.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 3 &2 \\ 0 &1 \end{pmatrix} \begin{pmatrix} b_1 \\ 0 \end{pmatrix}=3\cdot\begin{pmatrix} b_1 \\ 0 \end{pmatrix} }

That is, one solution to (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1=3} , and we have a first basis vector.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\beta}_1=\begin{pmatrix} 1 \\ 0 \end{pmatrix} }

In the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1} possibility, the first equation in (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cdot b_1+2\cdot b_2=0} , and so associated with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} are vectors whose second component is the negative of their first component.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 3 &2 \\ 0 &1 \end{pmatrix} \begin{pmatrix} b_1 \\ -b_1 \end{pmatrix}=1\cdot\begin{pmatrix} b_1 \\ -b_1 \end{pmatrix} }

Thus, another solution is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_2=1} and a second basis vector is this.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\beta}_2=\begin{pmatrix} 1 \\ -1 \end{pmatrix} }

To finish, drawing the similarity diagram

Linalg matrix equivalent cd 3.png

and noting that the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm Rep}_{B,\mathcal{E}_2}(\mbox{id})} is easy leads to this diagonalization.

In the next subsection, we will expand on that example by considering more closely the property of Corollary 2.4. This includes seeing another way, the way that we will routinely use, to find the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} 's.

Resources

Licensing

Content obtained and/or adapted from: