MAT1163
Revision as of 19:37, 29 July 2020 by Rylee.taylor (talk | contribs) (Filling out the course map for MAT 1163)
Essential Elements in Mathematics II
MAT 1163. Essential Elements in Mathematics II. (3-0) 3 Credit Hours. (TCCN = MATH 1351)
Prerequisite: MAT 1153. Algebra, statistics and probability; geometric shapes; measurement; coordinate and transformational geometry. May not be applied toward a major in mathematics. Generally offered: Fall, Spring, Summer. Course Fees: LRS1 $45; MFSM $30; STSI $21.
Date | Sections | Topics | Prerequisite Skills | Student learning outcomes |
---|---|---|---|---|
Example | Example | Definition of Polygons | Example |
|
Example | Example | Properties of Polygons (Sides, Angles and Diagonals) | Example |
|
Example | Example | Lines & Angles | Example | Example |
Example | Example | Transversal lines | Example | Example |
Example | Example | Classifying Triangles | Example | Example |
Example | Example | Triangle Inequality | Example | Example |
Example | Example | Triangle Congruence | Example | Example |
Example | Example | Triangles | Example | Example |
Example | Example | Theorem of Right Triangles | Example | Example |
Example | Example | Definitions and Hierarchy of Quadrilaterals | Example |
|
Example | Example | Measurement (LINEAR) | Definition of multiplication (# groups x group size = total) |
|
Example | Example | Measurement (LINEAR) – CONVERSION | Example | Convert between different units of length measurement |
Example | Example | Measurement (AREA) | Example | Calculate areas on a grid using additive and subtractive approaches |
Example | Example | Measurement (AREA) – CONVERSION | Example | Convert between different units of area measurement |
Example | Example | Area of Polygons - Formulas | Example | Develop, relate, and justify area formulas for parallelograms, triangles, and trapezoids |
Example | Example | Perimeter Area | Example |
|
Example | Example | Rigid Transformations | Example |
|
Example | Example | Symmetry | Example | Identify rotation and reflection symmetry and use rigid motions to create figures with different types of symmetry |
Example | Example | Similarity | Example |
|
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |
Example | Example | Example | Example | Example |