Difference between revisions of "Baire's Theorem and Applications"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 72: Line 72:
 
==Licensing==
 
==Licensing==
 
Content obtained and/or adapted from:
 
Content obtained and/or adapted from:
 +
* [http://mathonline.wikidot.com/dense-and-nowhere-dense-sets-in-a-topological-space Dense and Nowhere Dense Sets in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 +
* [http://mathonline.wikidot.com/sets-of-the-first-and-second-categories-in-a-topological-spa Sets of the First and Second Categories in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 
* [http://mathonline.wikidot.com/the-baire-category-theorem The Baire Category Theorem, mathonline.wikidot.com] under a CC BY-SA license
 
* [http://mathonline.wikidot.com/the-baire-category-theorem The Baire Category Theorem, mathonline.wikidot.com] under a CC BY-SA license
* [http://mathonline.wikidot.com/dense-and-nowhere-dense-sets-in-a-topological-space Dense and Nowhere Dense Sets in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 

Latest revision as of 15:17, 8 November 2021

Dense and Nowhere Dense Sets

Dense Sets in a Topological Space

Definition: Let be a topological space. The set is said to be Dense in if the intersection of every nonempty open set with is nonempty, that is, for all .

Given any topological space it is important to note that is dense in because every is such that , and so for all .

For another example, consider the topological space where is the usual topology of open intervals. Then the set of rational numbers is dense in . If not, then there exists an such that .

Since we have that for some open interval with and . Suppose that . Then we must also have that:

The intersection above implies that there exists no rational numbers in the interval , i.e., there exists no such that . But this is a contradiction since for all with there ALWAYS exists a rational number such that , i.e., . So for all . Thus, is dense in .

We will now look at a very important theorem which will give us a way to determine whether a set is dense in or not.

Theorem 1: Let be a topological space and let . Then is dense in if and only if .

  • Proof: Suppose that is dense in . Then for all we have that . Clearly so we only need to show that .

Nowhere Dense Sets in a Topological Space

Definition: Let be a topological space. A set is said to be Nowhere Dense in if the interior of the closure of is empty, that is, .

For example, consider the topological space where is the usually topology of open intervals on , and consider the set of integers . The closure of , is the smallest closed set containing . The smallest closed set containing is since is open as is an arbitrary union of open sets:

So what is the interior of ? It is the largest open set contained in . All open sets of with respect to this topology are either the empty set, an open interval, a union of open intervals, or the whole set (the union of all open intervals). But no open intervals are contained in and so:

Therefore is a nowhere dense set in with respect to the usual topology on .


Sets of the First and Second Categories in a Topological Space

Recall that if is a topological space then a set is said to be dense in if the intersection of with all open sets (except for the empty set) is nonempty, that is, for all we have that:

Furthermore, is said to be nowhere dense if the interior of the closure of is empty, that is:

We will now look at two very important definitions regarding whether an arbitrary set can either be written as the union of a countable collection of nowhere dense subsets of or not.

Definition: Let be a topological space. A set is said to be of The First Category or Meager if can be expressed as the union of a countable number of nowhere dense subsets of . If cannot be expressed as such a union, then is said to be of The Second Category or Nonmeager.

Note that in general it is much easier to show that a set of a topological space is of the first category since we only need to find a countable collection of nowhere dense subsets, say (possibly finite) where each is nowhere dense such that:

Showing that is of the second category is much more difficult since we must show that no such union of a countable collection of nowhere dense subsets from equals .

For an example of a set of the first category, consider the topological space where is the usual topology of open intervals and consider the set of rational numbers. We already know that the set of rational numbers is countable, so the following union is a union of a countable collection of subsets of :

Each of the sets is nowhere dense. Therefore can be expressed as the union of a countable collection of nowhere dense subsets of , so is of the first category.

The Baire Category Theorem

Lemma 1: Let be a topological space and let . If is a nowhere dense set then for every there exists a such that .

Theorem 1 (The Baire Category Theorem): Every complete metric space is of the second category.

  • Proof: Let be a complete metric space. Then every Cauchy sequence of elements from converges in . Suppose that is of the first category. Then there exists a countable collection of nowhere dense sets such that:
  • Let . For each nowhere dense set , there exists a set such that .
  • Let be a ball contained in such that . Let be a ball contained in whose radius is and such that . Repeat this process. For each let be a ball contained in whose radius is and such that and such that .
  • The sequence is Cauchy since as gets large, the elements are very close. Since is a complete metric space, we must have that this Cauchy sequence therefore converges to some , i.e., .
  • Now notice that for all because if not, then there exists an such that for all . Hence is open and so there exists an open ball such that but then because for all .
  • Since for all then since we must have that then

Licensing

Content obtained and/or adapted from: