Basic Physics (Mass, Force, Work, Newton's Second Law, Hooke's Law)

From Department of Mathematics at UTSA
Revision as of 21:17, 17 September 2021 by Khanh (talk | contribs)
Jump to navigation Jump to search

Mass

Definition

Mass is both a property of a physical body and a measure of its resistance to acceleration (rate of change of velocity with respect to time) when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies.

The SI base unit of mass is the kilogram (kg). In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass. This is because weight is a force, while mass is the property that (along with gravity) determines the strength of this force.

Weight vs. Mass

In everyday usage, mass and "weight" are often used interchangeably. For instance, a person's weight may be stated as 75 kg. In a constant gravitational field, the weight of an object is proportional to its mass, and it is unproblematic to use the same unit for both concepts. But because of slight differences in the strength of the Earth's gravitational field at different places, the distinction becomes important for measurements with a precision better than a few percent, and for places far from the surface of the Earth, such as in space or on other planets. Conceptually, "mass" (measured in kilograms) refers to an intrinsic property of an object, whereas "weight" (measured in newtons) measures an object's resistance to deviating from its natural course of free fall, which can be influenced by the nearby gravitational field. No matter how strong the gravitational field, objects in free fall are weightless, though they still have mass.

The force known as "weight" is proportional to mass and acceleration in all situations where the mass is accelerated away from free fall. For example, when a body is at rest in a gravitational field (rather than in free fall), it must be accelerated by a force from a scale or the surface of a planetary body such as the Earth or the Moon. This force keeps the object from going into free fall. Weight is the opposing force in such circumstances and is thus determined by the acceleration of free fall. On the surface of the Earth, for example, an object with a mass of 50 kilograms weighs 491 newtons, which means that 491 newtons is being applied to keep the object from going into free fall. By contrast, on the surface of the Moon, the same object still has a mass of 50 kilograms but weighs only 81.5 newtons, because only 81.5 newtons is required to keep this object from going into a free fall on the moon. Restated in mathematical terms, on the surface of the Earth, the weight W of an object is related to its mass m by W = mg, where g = 9.80665 m/s2 is the acceleration due to Earth's gravitational field, (expressed as the acceleration experienced by a free-falling object).

For other situations, such as when objects are subjected to mechanical accelerations from forces other than the resistance of a planetary surface, the weight force is proportional to the mass of an object multiplied by the total acceleration away from free fall, which is called the proper acceleration. Through such mechanisms, objects in elevators, vehicles, centrifuges, and the like, may experience weight forces many times those caused by resistance to the effects of gravity on objects, resulting from planetary surfaces. In such cases, the generalized equation for weight W of an object is related to its mass m by the equation W = –ma, where a is the proper acceleration of the object caused by all influences other than gravity. (Again, if gravity is the only influence, such as occurs when an object falls freely, its weight will be zero).

Inertial vs. Gravitational Mass

Although inertial mass, passive gravitational mass and active gravitational mass are conceptually distinct, no experiment has ever unambiguously demonstrated any difference between them. In classical mechanics, Newton's third law implies that active and passive gravitational mass must always be identical (or at least proportional), but the classical theory offers no compelling reason why the gravitational mass has to equal the inertial mass. That it does is merely an empirical fact.

Albert Einstein developed his general theory of relativity starting with the assumption that the inertial and passive gravitational masses are the same. This is known as the equivalence principle.

The particular equivalence often referred to as the "Galilean equivalence principle" or the "weak equivalence principle" has the most important consequence for freely falling objects. Suppose an object has inertial and gravitational masses m and M, respectively. If the only force acting on the object comes from a gravitational field g, the force on the object is:

F = Mg

Given this force, the acceleration of the object can be determined by Newton's second law:

F = ma

Putting these together, the gravitational acceleration is given by:

a = g

This says that the ratio of gravitational to inertial mass of any object is equal to some constant K if and only if all objects fall at the same rate in a given gravitational field. This phenomenon is referred to as the "universality of free-fall". In addition, the constant K can be taken as 1 by defining our units appropriately.

The first experiments demonstrating the universality of free-fall were—according to scientific 'folklore'—conducted by Galileo obtained by dropping objects from the Leaning Tower of Pisa. This is most likely apocryphal: he is more likely to have performed his experiments with balls rolling down nearly frictionless inclined planes to slow the motion and increase the timing accuracy. Increasingly precise experiments have been performed, such as those performed by Loránd Eötvös, using the torsion balance pendulum, in 1889. As of 2008, no deviation from universality, and thus from Galilean equivalence, has ever been found, at least to the precision 10−12. More precise experimental efforts are still being carried out.

The universality of free-fall only applies to systems in which gravity is the only acting force. All other forces, especially friction and air resistance, must be absent or at least negligible. For example, if a hammer and a feather are dropped from the same height through the air on Earth, the feather will take much longer to reach the ground; the feather is not really in free-fall because the force of air resistance upwards against the feather is comparable to the downward force of gravity. On the other hand, if the experiment is performed in a vacuum, in which there is no air resistance, the hammer and the feather should hit the ground at exactly the same time (assuming the acceleration of both objects towards each other, and of the ground towards both objects, for its own part, is negligible). This can easily be done in a high school laboratory by dropping the objects in transparent tubes that have the air removed with a vacuum pump. It is even more dramatic when done in an environment that naturally has a vacuum, as David Scott did on the surface of the Moon during Apollo 15.

A stronger version of the equivalence principle, known as the Einstein equivalence principle or the strong equivalence principle, lies at the heart of the general theory of relativity. Einstein's equivalence principle states that within sufficiently small regions of space-time, it is impossible to distinguish between a uniform acceleration and a uniform gravitational field. Thus, the theory postulates that the force acting on a massive object caused by a gravitational field is a result of the object's tendency to move in a straight line (in other words its inertia) and should therefore be a function of its inertial mass and the strength of the gravitational field.

Force

In physics, a force is any influence that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N). Force is represented by the symbol F (formerly P).

The original form of Newton's second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time. If the mass of the object is constant, this law implies that the acceleration of an object is directly proportional to the net force acting on the object, is in the direction of the net force, and is inversely proportional to the mass of the object.

Concepts related to force include: thrust, which increases the velocity of an object; drag, which decreases the velocity of an object; and torque, which produces changes in rotational speed of an object. In an extended body, each part usually applies forces on the adjacent parts; the distribution of such forces through the body is the internal mechanical stress. Such internal mechanical stresses cause no acceleration of that body as the forces balance one another. Pressure, the distribution of many small forces applied over an area of a body, is a simple type of stress that if unbalanced can cause the body to accelerate. Stress usually causes deformation of solid materials, or flow in fluids.

Newton's Second Law of Motion

References

  1. Kane, Gordon (4 September 2008). "The Mysteries of Mass". Scientific American. Nature America, Inc. pp. 32–39. Retrieved 5 July 2013.
  2. Eötvös, R.V.; Pekár, D.; Fekete, E. (1922). "Beiträge zum Gesetz der Proportionalität von Trägheit und Gravität" (PDF). Annalen der Physik. 68 (9): 11–66. Bibcode:1922AnP...373...11E. doi:10.1002/andp.19223730903.