Difference between revisions of "Compactness in Metric Spaces"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 20: Line 20:
 
<div style="text-align: center;"><math>\begin{align} \quad \bigcup_{k=1}^{p} \left ( 0, 1 - \frac{1}{n_p} \right ) = \left ( 0, 1 - \frac{1}{n^*} \right ) \end{align}</math></div>
 
<div style="text-align: center;"><math>\begin{align} \quad \bigcup_{k=1}^{p} \left ( 0, 1 - \frac{1}{n_p} \right ) = \left ( 0, 1 - \frac{1}{n^*} \right ) \end{align}</math></div>
 
<p>But for <span class="math-inline"><math>(0, 1) \subseteq \left ( 0, 1 - \frac{1}{n^*} \right )</math></span> we need <span class="math-inline"><math>1 \leq 1 - \frac{1}{n^*}</math></span>. But <span class="math-inline"><math>n^* \in \mathbb{N}</math></span>, so <span class="math-inline"><math>n^* > 0</math></span> and <span class="math-inline"><math>\frac{1}{n^*} > 0</math></span>, so <span class="math-inline"><math>1 - \frac{1}{n^*} < 1</math></span>. Therefore any finite subset <span class="math-inline"><math>\mathcal F^*</math></span> of <span class="math-inline"><math>\mathcal F</math></span> cannot cover <span class="math-inline"><math>S = (0, 1)</math></span>. Hence, <span class="math-inline"><math>(0, 1)</math></span> is not compact.</p>
 
<p>But for <span class="math-inline"><math>(0, 1) \subseteq \left ( 0, 1 - \frac{1}{n^*} \right )</math></span> we need <span class="math-inline"><math>1 \leq 1 - \frac{1}{n^*}</math></span>. But <span class="math-inline"><math>n^* \in \mathbb{N}</math></span>, so <span class="math-inline"><math>n^* > 0</math></span> and <span class="math-inline"><math>\frac{1}{n^*} > 0</math></span>, so <span class="math-inline"><math>1 - \frac{1}{n^*} < 1</math></span>. Therefore any finite subset <span class="math-inline"><math>\mathcal F^*</math></span> of <span class="math-inline"><math>\mathcal F</math></span> cannot cover <span class="math-inline"><math>S = (0, 1)</math></span>. Hence, <span class="math-inline"><math>(0, 1)</math></span> is not compact.</p>
 +
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [http://mathonline.wikidot.com/compact-sets-in-a-metric-space Compact Sets in a Metric Space] under a CC BY-SA license

Revision as of 15:42, 8 November 2021

Compact Sets in a Metric Space

If is a metric space and then a cover or covering of is a collection of subsets in such that:

Furthermore, we said that an open cover (or open covering) is simply a cover that contains only open sets.

We also said that a subset is a subcover/subcovering (or open subcover/subcovering if is an open covering) if is also a cover of , that is:

We can now define the concept of a compact set using the definitions above.

Definition: Let be a metric space. The subset is said to be Compact if every open covering of has a finite subcovering of .

In general, it may be more difficult to show that a subset of a metric space is compact than to show a subset of a metric space is not compact. So, let's look at an example of a subset of a metric space that is not compact.

Consider the metric space where is the Euclidean metric and consider the set . We claim that this set is not compact. To show that is not compact, we need to find an open covering of that does not have a finite subcovering. Consider the following open covering:

Clearly is an infinite subcovering of and furthermore:

Let be a finite subset of containing elements. Then:

Let . Then due to the nesting of the open covering , we see that:

But for we need . But , so and , so . Therefore any finite subset of cannot cover . Hence, is not compact.

Licensing

Content obtained and/or adapted from: