Difference between revisions of "Connectedness"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 10: Line 10:
 
<p>If <span class="math-inline"><math>c = a</math></span> then this implies that <span class="math-inline"><math>f = b</math></span> (since if <span class="math-inline"><math>d = b</math></span> then <span class="math-inline"><math>A = (a, b)</math></span> which implies that <span class="math-inline"><math>B = \emptyset</math></span>). So if <span class="math-inline"><math>A \cup B = (c, d) \cup (e, f) = (a, d) \cup (e, b) \text{ we must have that } a < d, e < b</math></span>. If <span class="math-inline"><math>d = e</math></span> then <span class="math-inline"><math>A \cup B = (a, d) \cup (d, b)</math></span> and so <span class="math-inline"><math>d \not \in (a, b)</math></span> so <span class="math-inline"><math>A \cup B \neq (a, b)</math></span>. If <span class="math-inline"><math>d < e</math></span> then <span class="math-inline"><math>A \cup B = (a, d) \cup (e, b)</math></span> and <span class="math-inline"><math>(d, e) \not \in (a, b)</math></span> so <span class="math-inline"><math>A \cup B \neq (a, b)</math></span>. If <span class="math-inline"><math>d > e</math></span> then <span class="math-inline"><math>A \cap B = (e, d) \neq \emptyset</math></span>. Either way we see that <span class="math-inline"><math>(a, b) \neq A \cup B</math></span>.</p>
 
<p>If <span class="math-inline"><math>c = a</math></span> then this implies that <span class="math-inline"><math>f = b</math></span> (since if <span class="math-inline"><math>d = b</math></span> then <span class="math-inline"><math>A = (a, b)</math></span> which implies that <span class="math-inline"><math>B = \emptyset</math></span>). So if <span class="math-inline"><math>A \cup B = (c, d) \cup (e, f) = (a, d) \cup (e, b) \text{ we must have that } a < d, e < b</math></span>. If <span class="math-inline"><math>d = e</math></span> then <span class="math-inline"><math>A \cup B = (a, d) \cup (d, b)</math></span> and so <span class="math-inline"><math>d \not \in (a, b)</math></span> so <span class="math-inline"><math>A \cup B \neq (a, b)</math></span>. If <span class="math-inline"><math>d < e</math></span> then <span class="math-inline"><math>A \cup B = (a, d) \cup (e, b)</math></span> and <span class="math-inline"><math>(d, e) \not \in (a, b)</math></span> so <span class="math-inline"><math>A \cup B \neq (a, b)</math></span>. If <span class="math-inline"><math>d > e</math></span> then <span class="math-inline"><math>A \cap B = (e, d) \neq \emptyset</math></span>. Either way we see that <span class="math-inline"><math>(a, b) \neq A \cup B</math></span>.</p>
 
<p>We can use the same logic for the other cases which will completely show that <span class="math-inline"><math>(a, b)</math></span> is connected.</p>
 
<p>We can use the same logic for the other cases which will completely show that <span class="math-inline"><math>(a, b)</math></span> is connected.</p>
 +
 +
== Licensing ==
 +
Content obtained and/or adapted from:
 +
* [http://mathonline.wikidot.com/connected-and-disconnected-metric-spaces Connected And Disconnected Metric Spaces, mathonline.wikidot.com] under a CC BY-SA license

Revision as of 11:11, 8 November 2021

Connected and Disconnected Metric Spaces

Definition: A metric space is said to be Disconnected if there exists nonempty open sets and such that and . If is not disconnected then we say that Connected. Furthermore, if then is said to be disconnected/connected if the metric subspace is disconnected/connected.

Intuitively, a set is disconnected if it can be separated into two pieces while a set is connected if it’s an entire piece.

For example, consider the metric space where is the Euclidean metric on . Let , i.e., is an open interval in . We claim that is connected.

Suppose not. Then there exists nonempty open subsets and such that and . Furthermore, and must be open intervals themselves, say and . We must have that . So or and furthermore, or .

If then this implies that (since if then which implies that ). So if . If then and so so . If then and so . If then . Either way we see that .

We can use the same logic for the other cases which will completely show that is connected.

Licensing

Content obtained and/or adapted from: