Difference between revisions of "Derivatives of Products and Quotients"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
Examples:
 
Examples:
 
* <math> f(x) = 6x + 1 </math>, <math> g(x) = x^2 </math>. <math> f'(x) = 6 </math> and <math> g'(x) = 2x </math>, so <math> \frac{d}{dx}(6x + 1)(x^2) = 6x^2 + (2x)(6x + 1)</math>.
 
* <math> f(x) = 6x + 1 </math>, <math> g(x) = x^2 </math>. <math> f'(x) = 6 </math> and <math> g'(x) = 2x </math>, so <math> \frac{d}{dx}(6x + 1)(x^2) = 6x^2 + (2x)(6x + 1)</math>.
* <math> f(x) = \sqrt{x} </math>, <math> g(x) = \sin{x} </math>. <math> f'(x) = \frac{1}{2\sqrt{x}} </math> and <math> g'(x) = \cos{x} </math>, so <math> \frac{d}{dx}(\sqrt{x})(\sin{x}) = (\frac{1}{2\sqrt{x}})(\cos{x}) + \sqrt{x}\sin{x}</math>.
+
* <math> f(x) = \sqrt{x} </math>, <math> g(x) = \sin{x} </math>. <math> f'(x) = \frac{1}{2\sqrt{x}} </math> and <math> g'(x) = \cos{x} </math>, so <math> \frac{d}{dx}(\sqrt{x})(\sin{x}) = \left(\frac{1}{2\sqrt{x}}\right)(\cos{x}) + \sqrt{x}\sin{x}</math>.
  
 
===Quotient Rule===
 
===Quotient Rule===
 
Let <math> f(x) </math> and <math> g(x) </math> be differentiable functions such that <math> g(x) \neq 0 </math>. Then, the derivative of the quotient, <math> \frac{f(x)}{g(x)} </math>, is
 
Let <math> f(x) </math> and <math> g(x) </math> be differentiable functions such that <math> g(x) \neq 0 </math>. Then, the derivative of the quotient, <math> \frac{f(x)}{g(x)} </math>, is
  
<math> \frac{d}{dx}\(\frac{f(x)}{g(x)}\) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} </math>.
+
<math> \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} </math>.
 +
 
 +
Examples:
 +
* <math> f(x) = x + 1 </math>, <math> g(x) = x^3 </math>. <math> f'(x) = 1 </math> and <math> g'(x) = 3x^2 </math>, so <math> \frac{d}{dx}\left(\frac{x+1}{x^3}\right) = \frac{x^3 - (x+1)(3x^2)}{(x^3)^2} = \frac{x^3 - 3x^3 - 3x^2}{x^6} = \frac{-x^2(2x + 3)}{x^6} = -\frac{2x + 3}{x^4}</math>.
 +
 
 +
* <math> f(x) = 5x </math>, <math> g(x) = x^2 + 1 </math>. <math> f'(x) = 5 </math> and <math> g'(x) = 2x </math>, so <math> \frac{d}{dx}\left(\frac{5x}{x^2 + 1}\right) = \frac{5(x^2+1) - 5x(2x)}{(x^2 + 1)^2} = \frac{5x^2+5 - 10x^2}{(x^2 + 1)^2} = \frac{5(1 - x^2)}{(x^2 + 1)^2}</math>.
 +
 
  
 
==Resources==
 
==Resources==
 
* [http://www2.gcc.edu/dept/math/faculty/BancroftED/buscalc/chapter2/section2-4.php Product and Quotient Rules], Grover City College
 
* [http://www2.gcc.edu/dept/math/faculty/BancroftED/buscalc/chapter2/section2-4.php Product and Quotient Rules], Grover City College
 
* [https://tutorial.math.lamar.edu/classes/calci/productquotientrule.aspx Product and Quotient Rule], Paul's Online Notes (Lamar University)
 
* [https://tutorial.math.lamar.edu/classes/calci/productquotientrule.aspx Product and Quotient Rule], Paul's Online Notes (Lamar University)

Latest revision as of 12:37, 21 September 2021

Product Rule

Let and be differentiable functions. Then, the derivative of their product, , is

.

Examples:

  • , . and , so .
  • , . and , so .

Quotient Rule

Let and be differentiable functions such that . Then, the derivative of the quotient, , is

.

Examples:

  • , . and , so .
  • , . and , so .


Resources