File:Julia set for z^2+0.7i*z.png
From Department of Mathematics at UTSA
Jump to navigation
Jump to search
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,000 × 2,000 pixels.
Original file (2,000 × 2,000 pixels, file size: 610 KB, MIME type: image/png)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
This image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with
{{vector version available|new image name}} .
It is recommended to name the SVG file “Julia set for z^2+0.7i*z.svg”—then the template Vector version available (or Vva) does not need the new image name parameter. |
Summary
DescriptionJulia set for z^2+0.7i*z.png |
English: Dynamic plane with Julia set for . Made with LCM = Level Curves Method. Level curves are boundaries of level sets ( escape and attraction time). Point escapes to infinityu or is attracted to the finite attractor ( here fixed point). The Julia set (boundary of filled-in Julia set) itself is not drawn: we see it as the locus of points where the level curves are especially close to each other = a place with high density of level curves. Points of critical orbit ( including crirital point and fixed point = finite attractor) are on the level curves like notes on the musical staff. Level curves cross at critical point and its preimages = saddle points. Compare it with fig 11 in 3-rd edition from 2006 of Dynamics in one complex variable: introductory lectures by John W. Milnor. ( or fig 5 from the preprint on Arxiv[1]. Critical point z= -0.35*i is the center of symmetry and lemniscate ( point in which level curves cross). Attracting fixed point z= 0 is the center of nested circles above the critical point. Preimage of fixed point z= -0.7*i is a the center of nested circles below the critical point.) |
Date | |
Source | Own work |
Author | Adam majewski |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
c source code
/*
https://arxiv.org/abs/math/9201272
Dynamics in one complex variable: introductory lectures
John W. Milnor
Figure 5. Julia set for z 7→ z^2 + .7z , with curves |φ| = constant .
or fig 11 in 3-rd edition from 2006
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOf -> DrawPointOf -> ComputeColorOf ( FunctionTypeT FunctionType , complex double z) -> ComputeColor
check only last function which computes color of one pixel for given Function Type
==========================================
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out > b.txt
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >i.txt
time ./a.out >e.txt
convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
#include <limits.h> // Maximum value for an unsigned long long int
// https://sourceforge.net/p/predef/wiki/Standards/
#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
//FunctionType
typedef enum {Fatou = 0, IntLSM =1 , ExtLSM = 2, LSM = 3, DEM = 4, Unknown = 5 , BD = 6, MBD = 7 , SAC = 8, DLD = 9, ND = 10 , NP= 11, POT = 12 , Blend = 13
} FunctionTypeT;
// FunctionTypeT FunctionType;
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int iHeight = 20000; //
// The size of array has to be a positive constant integer
static unsigned long long int iSize; // = iWidth*iHeight;
// memmory 1D array
unsigned char *data;
unsigned char *edge;
//unsigned char *edge2;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
// see SetPlane
double radius = 1.3;
complex double center ;
double DisplayAspectRatio = 1.0; // https://en.wikipedia.org/wiki/Aspect_ratio_(image)
// dx = dy compare setup : iWidth = iHeight;
double ZxMin; //= -1.3; //-0.05;
double ZxMax;// = 1.3; //0.75;
double ZyMin;// = -1.3; //-0.1;
double ZyMax;// = 1.3; //0.7;
double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
double ratio;
/*
ER = pow(10,ERe);
AR = pow(10,-ARe);
*/
//int ARe ; // increase ARe until black ( unknown) points disapear
//int ERe ;
double ER;
double ER2; //= 1e60;
double AR; // bigger values do not works
double AR2;
double AR_max;
//double AR12;
int IterMax = 100000;
int IterMax_LSM = 1000;
/* colors = shades of gray from 0 to 255
unsigned char colorArray[2][2]={{255,231}, {123,99}};
color = 245; exterior
*/
unsigned char iColorOfExterior = 245;
unsigned char iColorOfInterior1 = 99;
unsigned char iColorOfInterior2 = 183;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 5;
// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uInterior = 0;
unsigned long long int uExterior = 0;
// critical points
// critical points
complex double zcr = -0.35*I; // only one critical point
//complex double zc2 = -2.2351741790771484375e-08+9.4296410679817199707e-09*I;
/*
*/
/*
coefficients read from input file milnor_fig11.txt
degree 2 coefficient = ( +1.0000000000000000 +0.0000000000000000*i)
degree 1 coefficient = ( +0.0000000000000000 +0.7000000000000000*i)
Input polynomial p(z)=(1+0i)*z^2+(0+0.69999999999999995559i)*z^1
derivative dp/dz = (2+0i)*z^1+(0+0.69999999999999995559i)
1 critical points found
cp#0: 0,-0.3499999999999999778 . It's critical orbit is bounded and enters cycle #0 length=1 and it's stability = |multiplier|=0.7 =attractive
internal angle = 0.25
cycle = {
-4.9406564584124654418e-324,4.9406564584124654418e-324 ; }
*/
const complex double C =0.7*I;
const int period = 1;
// periodic points = attractors
complex double z1 = 0.0 ; //fixed point (period 1) = attracting cycle
/* ------------------------------------------ functions -------------------------------------------------------------*/
// complex function
complex double fc(const complex double z0, const complex double c) {
double complex z = z0;
z = z*z + z*c;
return z;
}
// iterated function
complex double Fpc(const complex double z0, const complex double c, const int period) {
int p;
int pMax = period;
double complex z = z0;
for (p=0; p< pMax; ++p ){
z = fc(z,c);}
return z;
}
//------------------complex numbers -----------------------------------------------------
// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx (int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double
GiveZy (int iy)
{
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double
GiveZ (int ix, int iy)
{
double Zx = GiveZx (ix);
double Zy = GiveZy (iy);
return Zx + Zy * I;
}
double cabs2(complex double z){
return creal(z)*creal(z)+cimag(z)*cimag(z);
}
/* find such AR for internal LCM/J and LSM that level curves croses critical point and it's preimages
for attracting ( also weakly attracting = parabolic) dynamics
it may fail if one iteration is bigger then smallest distance between periodic point and Julia set
*/
double GiveTunedAR(const int iter_Max, const double complex c , const double AR_max){
fprintf(stdout, " GiveTunedAR\n");
complex double z = zcr; // initial point z0 = criical point
int iter;
double r;
//int i_Max = 1000;
for (iter=0; iter< iter_Max; ++iter ){
// period !!!
r = cabs(z-z1);
//fprintf(stdout, " i = %d z = %f %+f \t r = %f = %d * pixeWidth \n",iter , creal(z), cimag(z), r, (int) (r/PixelWidth));
z = fc(z,c); // forward iteration
}
r = cabs(z-z1);
fprintf(stdout, " r = %f = %d * pixeWidth \n", r, (int) (r/PixelWidth));
if ( r> cabs(z-z1))
{ //fprintf(stdout, "one more forward iteration \n");
z = fc(z,c);
r = cabs(z-z1);
}
if ( r > AR_max )
{
//fprintf(stdout, " AR_max < r = %f = %d * pixeWidth \n", r, (int) (r/PixelWidth));
//fprintf(stdout, " increase i_max\n" );
r = AR_max;} // manual check
return r;
}
// =====================
int IsPointInsideTrap(complex double z){
if ( cabs2(z - z1) < AR2 ) {return 1;} // circle around z2a
return 0; // outside
}
int IsPointInsideTraps(complex double z){
if ( IsPointInsideTrap(z) ) {return 1;} //
return 0; // outside
}
// =====================
int IsPixelInsideTraps(unsigned int ix, unsigned int iy){
complex double z = GiveZ (ix, iy);
if ( IsPointInsideTraps(z) ) {return 1;} //
return 0; // outside
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
//
unsigned char ComputeColorOfFatou (complex double z)
{
double r2;
int i; // number of iteration
for (i = 0; i < IterMax; ++i)
{
r2 =cabs2(z);
if (r2 > ER2) // esaping = exterior
{
uExterior += 1;
return iColorOfExterior;
}
// solid color for each Fatou components
if ( IsPointInsideTrap(z)) {
uInterior +=1;
if ( i % period )
{return iColorOfInterior1;}
else {return iColorOfInterior2;}
} // 50 + (i % 114); }
z = fc(z,C); // complex iteration f(z)=z^3 + c
}
uUnknown += 1;
return iColorOfUnknown;
}
// f(z)=1+z−3z2−3.75z3+1.5z4+2.25z5
unsigned char ComputeColorOfLSM (complex double z)
{
double r2;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
// complex iteration f(z)=z^3 + c
r2 =cabs2(z);
if (r2 > ER2) // esaping = exterior
{
uExterior += 1;
return 255- ((i*15) % 255);
}
// solid color for each Fatou components
if ( IsPointInsideTrap(z)) {
uInterior +=1;
if ( i % 2 )
{return (i*9) % 255 ;}
else {return (i*10) % 255;}
} // 50 + (i % 114); }
z = fc(z,C);
}
uUnknown += 1;
return iColorOfUnknown;
}
/* ==================================================================================================
============================= Draw functions ===============================================================
=====================================================================================================
*/
unsigned char ComputeColor(FunctionTypeT FunctionType, complex double z){
unsigned char iColor;
switch(FunctionType){
case Fatou :{iColor = ComputeColorOfFatou(z); break;}
// case IntLSM :{iColor = ComputeColorOfIntLSM(z); break;}
// case ExtLSM :{iColor = ComputeColorOfExtLSM(z); break;}
case LSM :{iColor = ComputeColorOfLSM(z); break;}
/*
case DEM : {iColor = ComputeColorOfDEM(z); break;}
case Unknown : {iColor = ComputeColorOfUnknown(z); break;}
case BD : {iColor = ComputeColorOfBD(z); break;}
case MBD : {iColor = ComputeColorOfMBD(z); break;}
case SAC : {iColor = ComputeColorOfSAC(z); break;}
case DLD : {iColor = ComputeColorOfDLD(z); break;}
case ND : {iColor = ComputeColorOfND(z); break;}
case NP : {iColor = ComputeColorOfNP(z); break;}
case POT : {iColor = ComputeColorOfPOT(z); break;}
case Blend : {iColor = ComputeColorOfBlend(z); break;}
*/
default: {}
}
return iColor;
}
// plots raster point (ix,iy)
int DrawPoint ( unsigned char A[], FunctionTypeT FunctionType, int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColor(FunctionType, z);
A[i] = iColor ; //
return 0;
}
int DrawImage ( unsigned char A[], FunctionTypeT FunctionType)
{
unsigned int ix, iy; // pixel coordinate
fprintf (stdout, "compute Fatou image LSM\n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
for (iy = iyMin; iy <= iyMax; ++iy)
{
fprintf (stderr, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPoint(A, FunctionType, ix, iy); //
}
return 0;
}
int IsInside (int x, int y, int xcenter, int ycenter, int r){
double dx = x- xcenter;
double dy = y - ycenter;
double d = sqrt(dx*dx+dy*dy);
if (d<r)
return 1;
return 0;
}
int PlotBigPoint(complex double z, unsigned char A[]){
unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
unsigned int i;
/* mark seed point by big pixel */
int iSide =4.0*iWidth/2000.0 ; /* half of width or height of big pixel */
int iY;
int iX;
for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){
for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){
if (IsInside(iX, iY, ix_seed, iy_seed, iSide)) {
i= Give_i(iX,iY); /* index of _data array */
A[i]= 0; //255-A[i];
}}}
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int MarkAttractors (unsigned char A[])
{
fprintf (stdout, "mark attractors \n");
PlotBigPoint(z1, A); // period 1 cycle
//PlotBigPoint(z2b, A); //
return 0;
}
int MarkTraps(unsigned char A[]){
unsigned int ix, iy; // pixel coordinate
unsigned int i;
fprintf (stdout ,"Mark traps \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
for (iy = iyMin; iy <= iyMax; ++iy)
{
fprintf (stdout, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix){
if (IsPixelInsideTraps(ix, iy)) {
i= Give_i(ix,iy); /* index of _data array */
A[i]= 255-A[i]; // inverse color
}}}
return 0;
}
int PlotPoint(complex double z, unsigned char A[]){
unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
unsigned int i = Give_i(ix,iy); /* index of _data array */
A[i]= 0; //255-A[i]; // Mark point with inveres color
return 0;
}
int DrawForwardOrbit(complex double z, unsigned long long int iMax, unsigned char A[] )
{
unsigned long long int i; /* nr of point of critical orbit */
printf("draw forward orbit \n");
PlotBigPoint(z, A);
/* forward orbit of critical point */
for (i=1;i<iMax ; ++i)
{
z = fc(z,C);
//if (cabs2(z - z2a) > 2.0) {return 1;} // escaping
PlotBigPoint(z, A);
}
return 0;
}
int Test(){
complex double z = zcr;
int i;
int iMax = 100;
printf(" |z-z1| = %f \n", cabs(z-z1));
/* forward orbit of critical point */
for (i=1;i<iMax ; ++i)
{
z = fc(z,C);
printf("z = %f%+f \t |z-z1| = %f \n", creal(z), cimag(z), cabs(z-z1));
//if (cabs2(z - z2a) > 2.0) {return 1;} // escaping
}
return 0;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************
int SaveArray2PGMFile (unsigned char A[], char * n, char *comment)
{
FILE *fp;
const unsigned int MaxColorComponentValue = 255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name[100]; /* name of file */
snprintf (name, sizeof name, "%s", n ); /* */
char *filename = strcat (name, ".pgm");
char long_comment[200];
sprintf (long_comment, "fc(z)=z^2+z*c %s", comment);
// save image array to the pgm file
fp = fopen (filename, "wb"); // create new file,give it a name and open it in binary mode
fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp); // write whole array with image data bytes to the file in one step
fclose (fp);
// info
if ( rSize == iSize)
{
printf ("File %s saved ", filename);
if (long_comment == NULL || strlen (long_comment) == 0)
printf ("\n");
else { printf (". Comment = %s \n", long_comment); }
}
else {printf("wrote %zu elements out of %llu requested\n", rSize, iSize);}
return 0;
}
int PrintCInfo ()
{
printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is displayed in the console : export OMP_DISPLAY_ENV="TRUE"
printf ("__STDC__ = %d\n", __STDC__);
printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
printf ("c dialect = ");
switch (__STDC_VERSION__)
{ // the format YYYYMM
case 199409L:
printf ("C94\n");
break;
case 199901L:
printf ("C99\n");
break;
case 201112L:
printf ("C11\n");
break;
case 201710L:
printf ("C18\n");
break;
//default : /* Optional */
}
return 0;
}
int
PrintProgramInfo ()
{
// display info messages
printf ("Numerical approximation of Julia set for F(z,C) = z^2 + z*c) \n");
printf ("parameter C = ( %.16f ; %.16f ) \n", creal (C), cimag (C));
printf ("Period = %d orbit : \n", period);
printf ("\tfixed point z1 = ( %.16f ; %.16f ) \n", creal (z1), cimag (z1));
//printf ("\tparameter z2b = ( %.16f ; %.16f ) \n", creal (z2b), cimag (z2b));
printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
printf ("PixelWidth = %.16f \n", PixelWidth);
printf ("AR = %.16f = %f *PixelWidth = %f %% of ImageWidth \n", AR, AR / PixelWidth, AR / ZxMax - ZxMin);
printf("pixel counters\n");
printf ("\tuUnknown = %llu\n", uUnknown);
printf ("\tuExterior = %llu\n", uExterior);
printf ("\tuInterior = %llu\n", uInterior);
printf ("Sum of pixels = %llu\n", uInterior+uExterior + uUnknown);
printf ("all pixels of the array = iSize = %llu\n", iSize);
// image corners in world coordinate
// center and radius
// center and zoom
// GradientRepetition
printf ("Maximal number of iterations = iterMax = %d \n", IterMax);
printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio);
//
return 0;
}
int SetPlane(complex double center, double radius, double a_ratio){
ZxMin = creal(center) - radius*a_ratio;
ZxMax = creal(center) + radius*a_ratio; //0.75;
ZyMin = cimag(center) - radius; // inv
ZyMax = cimag(center) + radius; //0.7;
return 0;
}
// Check Orientation of z-plane image : mark first quadrant of complex plane
// it should be in the upper right position
// uses global var : ...
int CheckZPlaneOrientation(unsigned char A[] )
{
double Zx, Zy; // Z= Zx+ZY*i;
unsigned i; /* index of 1D array */
unsigned int ix, iy; // pixel coordinate
fprintf(stderr, "compute image CheckOrientation\n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy, i, Zx, Zy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
//fprintf (stderr, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix){
// from screen to world coordinate
Zy = GiveZy(iy);
Zx = GiveZx(ix);
i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
if (Zx>0 && Zy>0) A[i]=255-A[i]; // check the orientation of Z-plane by marking first quadrant */
}
}
return 0;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int setup ()
{
fprintf (stderr, "setup start\n");
/* 2D array ranges */
iWidth = iHeight* DisplayAspectRatio ;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
center = zcr;
SetPlane( center, radius, DisplayAspectRatio );
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight); // it should be 1.000 ...
ER = 200.0; //
ER2 = ER*ER;
AR_max = 5*PixelWidth*iWidth/2000.0 ; // adjust first number
// GiveTunedAR(const int i_Max, const complex double zcr, const double c, const double zp){
AR = GiveTunedAR(200, C, AR_max);
AR2 = AR * AR;
//AR12 = AR/2.0;
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL)
{
fprintf (stderr, " Could not allocate memory");
return 1;
}
fprintf (stderr, " end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int end ()
{
fprintf (stderr, " allways free memory (deallocate ) to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
free (data);
free(edge);
PrintProgramInfo ();
PrintCInfo ();
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int main ()
{
setup ();
//Test();
DrawImage (data, Fatou); // first find Fatou
SaveArray2PGMFile (data, "Fatou" , "Fatou ");
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, "Fatou_b", "Boundaries of Fatou");
CopyBoundaries(edge,data);
SaveArray2PGMFile (data, "Fatou_B", "Fatou with boundaries");
DrawImage (data, LSM); // first find Fatou
SaveArray2PGMFile (data, "LSM", "LSM");
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, "LCM", "Level Curves Method = Boundaries of Level Sets");
DrawForwardOrbit(zcr, 10, edge);
SaveArray2PGMFile (edge, "LCM_cr", "LCM and critical orbit");
MarkTraps(data);
MarkAttractors(data);
SaveArray2PGMFile (data, "LSM_bt", "Fatou with boundaries and traps; ");
CheckZPlaneOrientation(data);
SaveArray2PGMFile (data, "LSM_btm", "Fatou with boundaries and traps. First quadrant is marked");
/*
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, 1, "Boundaries of Fatou; name = iWidth_IterMax_n");
CopyBoundaries(edge,data);
SaveArray2PGMFile (data, 2, "Fatou with boundaries; name = iWidth_IterMax_n");
DrawFatouImageLSM (data, IterMax); // first find Fatou
SaveArray2PGMFile (data, 6, "Fatou LSM, name = iWidth_IterMax_n");
CopyBoundaries(edge,data);
SaveArray2PGMFile (data, 8, "LSM with boundaries; name = iWidth_IterMax_n");
*/
end ();
return 0;
}
bash source code
#!/bin/bash
# script file for BASH
# which bash
# save this file as d.sh
# chmod +x d.sh
# ./d.sh
# checked in https://www.shellcheck.net/
printf "make pgm files \n"
gcc d.c -lm -Wall -march=native -fopenmp
if [ $? -ne 0 ]
then
echo ERROR: compilation failed !!!!!!
exit 1
fi
export OMP_DISPLAY_ENV="TRUE"
printf "display OMP info \n"
time ./a.out > a.txt
export OMP_DISPLAY_ENV="FALSE"
printf "convert all pgm files to png using Image Magic convert \n"
# for all pgm files in this directory
for file in *.pgm ; do
# b is name of file without extension
b=$(basename "$file" .pgm)
# convert using ImageMagic
convert "${b}".pgm -resize 2000x2000 "${b}".png
echo "$file"
done
printf "delete all pgm files \n"
rm ./*.pgm
echo OK
# end
Make
all:
chmod +x d.sh
./d.sh
Text output
make chmod +x d.sh ./d.sh make pgm files display OMP info OPENMP DISPLAY ENVIRONMENT BEGIN _OPENMP = '201511' OMP_DYNAMIC = 'FALSE' OMP_NESTED = 'FALSE' OMP_NUM_THREADS = '8' OMP_SCHEDULE = 'DYNAMIC' OMP_PROC_BIND = 'FALSE' OMP_PLACES = '' OMP_STACKSIZE = '0' OMP_WAIT_POLICY = 'PASSIVE' OMP_THREAD_LIMIT = '4294967295' OMP_MAX_ACTIVE_LEVELS = '1' OMP_CANCELLATION = 'FALSE' OMP_DEFAULT_DEVICE = '0' OMP_MAX_TASK_PRIORITY = '0' OMP_DISPLAY_AFFINITY = 'FALSE' OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A' OMP_ALLOCATOR = 'omp_default_mem_alloc' OMP_TARGET_OFFLOAD = 'DEFAULT' OPENMP DISPLAY ENVIRONMENT END setup start end of setup compute image CheckOrientation allways free memory (deallocate ) to avoid memory leaks File LSM_a.pgm saved . Comment = fc(z)=z^3+c Fatou with boundaries and traps; name = iWidth_IterMax_n File LSM_am.pgm saved . Comment = fc(z)=z^3+c Fatou with boundaries and traps. First quadrant is marked Numerical approximation of Julia set for F(z,C) = z^2 + z*c) parameter C = ( 0.0000000000000000 ; 0.7000000000000000 ) Period = 1 orbit : fixed point z1 = ( 0.0000000000000000 ; 0.0000000000000000 ) Image Width = 2.600000 in world coordinate PixelWidth = 0.0001300065003250 AR = 0.0000000000000000 = 0.000000 *PixelWidth = 1.300000 % of ImageWidth pixel counters uUnknown = 0 uExterior = 418938082 uInterior = 327235851 Sum of pixels = 746173933 all pixels of the array = iSize = 400000000 Maximal number of iterations = iterMax = 100000 ratio of image = 1.000000 ; it should be 1.000 ... gcc version: 10.3.0 __STDC__ = 1 __STDC_VERSION__ = 201710 c dialect = C18 real 7m31,286s user 52m33,681s sys 0m6,141s convert all pgm files to png using Image Magic convert FatouAnd B.pgm Fatou_b.pgm Fatou.pgm LCM_9.pgm LCM_cr.pgm LSM_9.pgm LSM_am.pgm LSM_a.pgm delete all pgm files OK
References
some value
9 June 2021
image/png
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 12:59, 9 June 2021 | 2,000 × 2,000 (610 KB) | Soul windsurfer | file comment |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
File change date and time | 18:58, 9 June 2021 |
---|---|
PNG file comment |
|