Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 11: Line 11:
 
<p><strong>Solution</strong></p>
 
<p><strong>Solution</strong></p>
  
<p>Substitute <math>\( u=3x\)</math>. Then <math>\( du=3\,dx\)</math> and we have</p>
+
<p>Substitute <math> u=3x</math>. Then <math> du=3dx</math> and we have</p>
  
<p style="text-align: center;"><math>\[ \int;\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}.\nonumber\]</math></p>
+
<p style="text-align: center;"><math> \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}.</math></p>
  
 
<p>Applying the formula with <math>\( a=2,\)</math> we obtain</p>
 
<p>Applying the formula with <math>\( a=2,\)</math> we obtain</p>

Revision as of 14:19, 28 October 2021

Evaluate the integral

Solution

Substitute . Then and we have

Applying the formula with Failed to parse (syntax error): {\displaystyle \( a=2,\)} we obtain

Failed to parse (syntax error): {\displaystyle \[ \int;\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\]}

Resources

Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor

Integrating using Inverse Trigonometric Functions by patrickJMT