Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(4 intermediate revisions by 2 users not shown)
Line 22: Line 22:
  
 
===Example 2===
 
===Example 2===
<p>Evaluate \(\displaystyle \int \frac{4-x}{\sqrt{16-x^2}}\ dx\).</p>
+
<p>Evaluate <math> \int \frac{4-x}{\sqrt{16-x^2}}\text{dx} </math>.</p>
  
 
<p><strong>Solution</strong></p>
 
<p><strong>Solution</strong></p>
Line 28: Line 28:
 
<p>This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:</p>
 
<p>This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:</p>
  
<p>$$ \int \frac{4-x}{\sqrt{16-x^2}}\ dx = \int \frac{4}{\sqrt{16-x^2}}\ dx - \int \frac{x}{\sqrt{16-x^2}}\ dx.$$</p>
+
<p><math> \int \frac{4-x}{\sqrt{16-x^2}}\text{dx= \int \frac{4}{\sqrt{16-x^2}}\text{dx- \int \frac{x}{\sqrt{16-x^2}}\text{dx}  </math> </p>
  
<p>The first integral is handled using a straightforward application of Theorem \(\PageIndex{2}\); the second integral is handled by substitution, with \(u = 16-x^2\). We handle each separately.</p>
+
<p>The first integral is handled straightforward; the second integral is handled by substitution, with <math>u = 16-x^2</math>. We handle each separately. </p>
  
<p>\(\displaystyle \int \frac{4}{\sqrt{16-x^2}}\ dx = 4\arcsin\frac{x}{4} + C.\)</p>
+
<p><math>\int \frac{4}{\sqrt{16-x^2}}\text{dx= 4\arcsin\frac{x}{4} + C.</math></p>
  
<p>\(\displaystyle \int\frac{x}{\sqrt{16-x^2}}\ dx\): Set \(u = 16-x^2\), so \(du = -2xdx\) and \(xdx = -du/2\). We have</p>
+
<p><math>\int\frac{x}{\sqrt{16-x^2}}\text{dx} </math>: Set <math>u = 16-x^2</math>, so <math>\text{du= -2x\text{dx} </math> and <math>x\text{dx}  = -\text{du} /2</math>. We have</p>
  
<p>\[\begin{align} \int\frac{x}{\sqrt{16-x^2}}\ dx &amp;= \int\frac{-du/2}{\sqrt{u}}\\ &amp;= -\frac12\int \frac{1}{\sqrt{u}}\ du \\ &amp;= - \sqrt{u} + C\\ &amp;= -\sqrt{16-x^2} + C.\end{align}\]</p>
+
<p><math>\begin{align} \int\frac{x}{\sqrt{16-x^2}}\text{dx= \int\frac{-\text{du} /2}{\sqrt{u}}\\ = -\frac12\int \frac{1}{\sqrt{u}}\text{du\\ = - \sqrt{u} + C\\ = -\sqrt{16-x^2} + C.\end{align}</math></p>
  
 
<p>Combining these together, we have</p>
 
<p>Combining these together, we have</p>
  
<p>$$ \int \frac{4-x}{\sqrt{16-x^2}}\ dx = 4\arcsin\frac x4 + \sqrt{16-x^2}+C.$$</p>
+
<p><math> \int \frac{4-x}{\sqrt{16-x^2}}\text{dx= 4\arcsin\frac x4 + \sqrt{16-x^2}+C.</math></p>
  
 
==Resources==
 
==Resources==
[https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor
+
*[https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor
  
[https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by  patrickJMT
+
*[https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by  patrickJMT
 +
 
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [https://math.libretexts.org/Courses/Monroe_Community_College/MTH_211_Calculus_II/Chapter_5%3A_Integration/5.7%3A_Integrals_Resulting_in_Inverse_Trigonometric_Functions_and_Related_Integration_Techniques Integrals Resulting in Inverse Trigonometric Functions, LibreTexts: Mathematics] under a CC BY-SA-NC license

Latest revision as of 16:38, 15 January 2022


Example 1

Evaluate the integral

Solution

Substitute . Then and we have

Applying the formula with we obtain

Example 2

Evaluate .

Solution

This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:

The first integral is handled straightforward; the second integral is handled by substitution, with . We handle each separately.

: Set , so and . We have

Combining these together, we have

Resources

Licensing

Content obtained and/or adapted from: