MAT3223

From Department of Mathematics at UTSA
Revision as of 12:44, 23 March 2023 by Eduardo.duenez (talk | contribs) (Up to 2nd midterm (week 10).)
Jump to navigation Jump to search

Course Catalog

MAT 3223. Complex Variables. (3-0) 3 Credit Hours.

Prerequisites: MAT 2214 and MAT 3213. An introduction to complex variables, including elementary functions, line integrals, power series, residues and poles, and conformal mappings. Generally offered: Spring. Differential Tuition: $150.

Textbook: John M. Howie, “Complex Analysis”, Springer Undergraduate Mathematics Series, Springer-Verlag London (2003). ISBN: 978-1-4471-0027-0. [1]

Week Sections Topics Student Learning Outcomes
1

2.1 & 2.2

Introduction to complex numbers, their operations and geometry.

  • Complex numbers and the complex plane.
  • Elementary operations on complex numbers (addition, subtraction, multiplication, division, conjugation, modulus, argument).
  • Complex numbers in Cartesian and polar forms.
  • Complex operations: Elementary algebraic identities and inequalities.
  • Geometric meaning of complex arithmetic operations.
  • DeMoivre's Formula.

2

3.1, 3.2, 3.3

Topology of the complex plane. Continuous complex functions.

  • Essential analysis concepts: sequences, series, limits, convergence, completeness.
  • Basic topology of the complex plane: open, closed and punctured discs, open and closed sets, neighborhoods.
  • Continuous functions and operations on them.

3

4.1

Complex differentiation

  • Definition of complex derivative at a point.
  • Cauchy-Riemann equations.
  • Examples of differentiable and non-differentiable complex functions.
  • Holomorphic functions.

4

4.2

Examples of power series and their formal manipulation.

  • Review of Taylor coefficients and Taylor series. Radius of convergence.
  • Power series of rational functions.
  • Power series defining the complex exponential, trigonometric and hyperbolic functions.

5

4.3, 4.5 & 4.5

Complex natural logarithms. Multivalued holomorphic functions. Singularities.

  • Definition of the multivalued complex natural logarithm, its principal branch, and other branches.
  • Complex powers via logarithms.
  • Definition of branch point and branches.
  • Functions holomorphic in punctured neighborhoods. Poles and other singularities.
  • Examples of branching and singularities (complex logarithms, inverse trigonometric/hyperbolic functions, and complex powers).

6

None

Review. First midterm exam.

7

5.2 & 5.3

Parametric curves. Line integrals.

  • Parametric representation of piecewise smooth curves.
  • Arc-length. Rectifiable curves.
  • Line integrals: Definition, examples, and elementary properties.
  • Line integrals of holomorphic functions. Fundamental Theorem.

8

5.4 & 5.5

Estimation and convergence of line integrals.

  • Majorization of path integrals by arclength and bound on magnitude of integrand.
  • Antiderivatives of complex functions with path-independent line integrals.
  • Uniform and non-uniform convergence of sequences and series of complex functions.
  • Continuous uniform limits of continuous sequences and series, and their integrals.

9

6.1, 6.2, 6.3

Cauchy's Theorem and its basic consequences.

  • Statement of Cauchy's Theorem.
  • Proof of Cauchy's Theorem.
  • The Deformation Theorem.

10

7.1 & 7.2

Cauchy's Integral Formula. Taylor series.

  • Statement and proof of Cauchy's Integral Formula.
  • Existence, uniqueness, and general theory of Taylor series of holomorphic functions.
  • Rigorous definition of and proof that complex logarithms are holomorphic.

11

None

Review. Second midterm exam.

12

8.1–8.4

  • Introduction to complex numbers and their operations.
  • The complex number system 𝐂.
  • The complex plane.
  • The real number system 𝐑.
  • Fractional powers and roots of real numbers.
  • Represent complex numbers algebraically in Cartesian form.
  • Represent complex numbers geometrically as points on a plane.
  • Carry out arithmetic operations with complex numbers.
  • Interpret the geometric meaning of addition, subtraction and complex conjugation.
  • Identify the set 𝐂 of complex numbers as a field extending the real number system 𝐑.

13

8.5–8.7

  • Polar form of complex numbers.
  • Geometric meaning of complex multiplication and division.
  • Powers and roots of complex numbers. De Moivre’s Theorem.
  • The complex number system 𝐂.
  • The complex plane.
  • Roots and fractional powers of real numbers.
  • Represent complex numbers in polar form.
  • Algebraically relate the Cartesian and polar forms of a complex number.
  • Use the identities cis(𝜃+ɸ) = cis𝜃∙cisɸ and (cis𝜃)n = cis(n𝜃) (De Moivre's formula) for the complex trigonometric function cis𝜃 = cos𝜃 + i∙sin𝜃 to evaluate products and powers both algebraically and geometrically.
  • Evaluate all n-th roots of a given complex number both in trigonometric and (when possible) in algebraic closed form, and represent them geometrically.

14

8.8–9.2

  • Roots and factors of polynomials. The Remainder Theorem.
  • Real and complex roots.
  • The Fundamental Theorem of Algebra.
  • The complex number system 𝐂.
  • Powers and roots of complex numbers. De Moivre’s Theorem.
  • Polynomials: arithmetic operations, long division, and factorizations.
  • State and prove the Remainder Theorem.
  • Identify roots with linear factors of a polynomial.
  • Factor given simple polynomials into irreducible factors over ℚ, ℝ and ℂ.
  • State the Fundamental Theorem of Algebra.
  • Use the Fundamental Theorem of Algebra to prove that irreducible real polynomials are linear or quadratic.